Static Analysis by Abstract Interpretation and Decision Procedures

October 13, 2014

Jury

David Monniaux Director CNRS Matthieu Moy Co-Advisor Grenoble INP Antoine Miné Reviewer ENS Paris Cesare Tinelli Reviewer University of Iowa Hugues Cassé Examiner IRIT Roland Groz Examiner Grenoble INP Andreas Podelski Examiner University of Freiburg

J. Henry (University of Grenoble) Contact the Contact of Contact of

Static Analysis

- Used in Embedded and Safety Critical Systems (Astrée)
- Require strong guarantees that programs behave correctly

Principle of **Static Analysis**:

Look at the source code

Discover properties on programs that always hold (**invariants**)

[Spoiler Alert] - PAGAI Screenshot

```
int bicycle() \ellint bicycle()int count=0, phase=0;
                                                int /* reachable */for(int i=0; i<10000; i++) {
                                                    count=0, phase=0;
if (phase == 0) {
                                                for(int i=0; i<10000; // safe
  count += 2; phase = 1;
                                                                       i++) l} else if (phase == 1) {
                                                  /* invariant:
  count += 1; phase = 0;
                                                 -2*count + phase + 3* i = 014998-count+phase >= 0
A,
                                                 1-phase >= 0assert(count \leq 15000):
                                                 phase >= 0return count:
                                                 count-2 * phase > = 0* /
                                                  if (phase == 0) {
                                                    11 safe
                                                    count += 2; phase = 1;
                                                  } else if (phase == 1) {
                                                    11 safe
                                                    count += 1; phase = 0;
                                                  <sup>1</sup>
                                                /* assert OK */
                                               assert(count <= 15000);
                                               /* invariant:
                                               -15000 + count = 0* /
                                               return count;
```


Several Approaches to Formal Verification

Several Approaches to Formal Verification

Use Model Checking techniques in Abstract Interpretation

Summary

[Improving Abstract Interpretation with Decision Procedures](#page-37-0)

- **[Modular Static Analysis](#page-70-0)**
-
- **[Implementation: The P](#page-82-0)AGAI Static Analyzer**
- 5 [Application: Bounding Worst-Case Execution Time \(WCET\)](#page-86-0)

Summary

-
- [Improving Abstract Interpretation with Decision Procedures](#page-37-0)
- **[Modular Static Analysis](#page-70-0)**
- **[Implementation: The P](#page-82-0)AGAI Static Analyzer**
- [Application: Bounding Worst-Case Execution Time \(WCET\)](#page-86-0)

Abstract domain to over-approximate sets of states:

Abstract domain to over-approximate sets of states:

BOXES:

 $4 < x < 17$ $2 \le y \le 12$

Abstract domain to over-approximate sets of states:

Abstract domain to over-approximate sets of states:

- All abstract values (**intervals**) initialized to ∅
- Update until there is no more element to add

- All abstract values (**intervals**) initialized to ∅
- Update until there is no more element to add

- All abstract values (**intervals**) initialized to ∅
- Update until there is no more element to add

- All abstract values (**intervals**) initialized to ∅
- Update until there is no more element to add

- All abstract values (**intervals**) initialized to ∅
- Update until there is no more element to add

- All abstract values (**intervals**) initialized to ∅
- Update until there is no more element to add

- All abstract values (**intervals**) initialized to ∅
- Update until there is no more element to add

- All abstract values (**intervals**) initialized to ∅
- Update until there is no more element to add

- All abstract values (**intervals**) initialized to ∅
- Update until there is no more element to add

- All abstract values (**intervals**) initialized to ∅
- Update until there is no more element to add

- All abstract values (**intervals**) initialized to ∅
- Update until there is no more element to add

- All abstract values (**intervals**) initialized to ∅
- Update until there is no more element to add

- All abstract values (**intervals**) initialized to ∅
- Update until there is no more element to add

Descending Sequence

Recover precision **after** an invariant is reached

Descending Sequence

Recover precision **after** an invariant is reached

Descending Sequence

Recover precision **after** an invariant is reached

Some Sources of Imprecision

- • Widening operator
	- \blacktriangleright Ensures termination, degrades precision
	- \blacktriangleright Descending sequence sometimes helps...

 λ

Some Sources of Imprecision

- Widening operator
	- \blacktriangleright Ensures termination, degrades precision
	- \triangleright Descending sequence sometimes helps...
- Control flow merges
	- \blacktriangleright Limited expressivity of the abstract domain

=
Some Sources of Imprecision

- Widening operator
	- \blacktriangleright Ensures termination, degrades precision
	- Descending sequence sometimes helps...
- Control flow merges
	- \blacktriangleright Limited expressivity of the abstract domain

Limit the bad effects of **widenings** and **least upper bounds**

Summary

[Improving Abstract Interpretation with Decision Procedures](#page-37-0)

- **[Modular Static Analysis](#page-70-0)**
- **[Implementation: The P](#page-82-0)AGAI Static Analyzer**
- [Application: Bounding Worst-Case Execution Time \(WCET\)](#page-86-0)

Least Upper Bound yields Imprecision

if (input()) $x = 1$: else $x = -1;$ // (here) if $(x == 0)$ error(); $y = 1 / x;$

Least Upper Bound yields Imprecision

if (input()) $x = 1;$ else $x = -1;$ // (here) if $(x == 0)$ error(); $y = 1 / x;$

Least Upper Bound yields Imprecision

Trace Partitioning [Mauborgne & Rival] Large Block Encoding [Beyer & al.]

[Monniaux & Gonnord, SAS11], [Henry & al, TAPAS12]

[Monniaux & Gonnord, SAS11], [Henry & al, TAPAS12]

[Monniaux & Gonnord, SAS11], [Henry & al, TAPAS12]

[Monniaux & Gonnord, SAS11], [Henry & al, TAPAS12]

Satisfiability Modulo Theory (SMT)

Boolean SATISFIABILITY (SAT):

*b*₁ ∧ ((*b*₂ ∧ *b*₃) ∨ (*b*₄))

.

Satisfiability Modulo Theory (SMT)

Boolean SATISFIABILITY (SAT):

$$
b_1 \wedge ((b_2 \wedge b_3) \vee (b_4))
$$

x ≥ 0 ∧ ((y ≥ *x* + 10 ∧ *b*₃) ∨ (*x* + 1 ≥ 0))

MODULO THEORY: Atoms can be interpreted in a given decidable theory

e.g. Linear Integer Arithmetic

[Monniaux & Gonnord, SAS11], [Henry & al, TAPAS12]

In practice: distinguish every paths **between loop heads**

[Monniaux & Gonnord, SAS11], [Henry & al, TAPAS12]

Usual algorithm: update an abstract value until it is an inductive invariant.

[Monniaux & Gonnord, SAS11], [Henry & al, TAPAS12]

Usual algorithm: update an abstract value until it is an inductive invariant.

[Monniaux & Gonnord, SAS11], [Henry & al, TAPAS12]

Usual algorithm: update an abstract value until it is an inductive invariant.

[Monniaux & Gonnord, SAS11], [Henry & al, TAPAS12]

Usual algorithm: update an abstract value until it is an inductive invariant.

[Monniaux & Gonnord, SAS11], [Henry & al, TAPAS12]

Usual algorithm: update an abstract value until it is an inductive invariant.

[Monniaux & Gonnord, SAS11], [Henry & al, TAPAS12]

Usual algorithm: update an abstract value until it is an inductive invariant.

[Monniaux & Gonnord, SAS11], [Henry & al, TAPAS12]

Usual algorithm: update an abstract value until it is an inductive invariant.

[Monniaux & Gonnord, SAS11], [Henry & al, TAPAS12]

Usual algorithm: update an abstract value until it is an inductive invariant.

[Monniaux & Gonnord, SAS11], [Henry & al, TAPAS12]

Usual algorithm: update an abstract value until it is an inductive invariant.

[Monniaux & Gonnord, SAS11], [Henry & al, TAPAS12]

Usual algorithm: update an abstract value until it is an inductive invariant.

[Monniaux & Gonnord, SAS11], [Henry & al, TAPAS12]

Usual algorithm: update an abstract value until it is an inductive invariant.

[Monniaux & Gonnord, SAS11], [Henry & al, TAPAS12]

Usual algorithm: update an abstract value until it is an inductive invariant.

Observation: Imprecision due to widening spreads

Intuition: Widenings might enable paths that were previously infeasible

```
x = 0:
while (x < 1000) {
    if (x > 2000) { ... }
    x++;}
```
[Gopan & Reps, SAS07] :

- Do not consider these "spurious" transitions
- Eliminate them using **descending sequences**

- Choose sub-program $($ = set of paths directly feasible)
- ² Ascending iterations
- ³ **Descending iterations**

- Choose sub-program $($ = set of paths directly feasible)
- Ascending iterations
- ³ **Descending iterations**

- Choose sub-program $($ = set of paths directly feasible)
- Ascending iterations
- ³ **Descending iterations**

- Choose sub-program $($ = set of paths directly feasible)
- Ascending iterations
- ³ **Descending iterations**

- Choose sub-program $($ = set of paths directly feasible)
- Ascending iterations
- ³ **Descending iterations**

Extension 1: Disjunctive Invariants

Allow disjunctions of abstract values

Extension 2: Less SMT Queries

In the worst case, 2^n paths \implies exponential number of SMT queries

"Interesting traces" **far** from the current abstract value

Extension 2: Less SMT Queries

In the worst case, 2^n paths \implies exponential number of SMT queries

"Interesting traces" **far** from the current abstract value

Intermediate Conclusion

- Abstract Interpretation can be parametrized in many ways
- From very cheap to very expensive
	- \blacktriangleright fixpoint computation techniques
	- \blacktriangleright abstract domains

Run cheap techniques first, and refine program portions if needed (CEGAR)

Summary

[Improving Abstract Interpretation with Decision Procedures](#page-37-0)

[Modular Static Analysis](#page-70-0)

- **[Implementation: The P](#page-82-0)AGAI Static Analyzer**
- [Application: Bounding Worst-Case Execution Time \(WCET\)](#page-86-0)

CONTRIBUTION: Modular Static Analysis

Input: Complicated CFG

Select blocks/portions to be abstracted:

- **•** Loops,
- **•** Function calls,
- Complicated program portions

Select blocks/portions to be abstracted:

- Loops,
- Function calls.
- Complicated program portions

Each block has **input** and **output** variables

Abstract each block with a logical formula.

 $\mathcal{R}_1(x^i,x^o)$ involves **inputs** and **outputs** Example: $x^i > 0 \Rightarrow x^o = x^i + 1$

 \mathcal{R}_i initialized to true (= safe over-approximation)

SMT query:

"Is there a path to the error state ?"

YES: $Model(x^{i}) = (x_{i} = 10)$ $Model(x^o) = (x_o = 12)$

> $x_i = 10 \land \mathcal{R}_1(x^i, x^o) \land x_o = 12$ is SAT

SMT query:

"Is there a path to the error state ?"

YES: $Model(x^{i}) = (x_{i} = 10)$ $Model(x^o) = (x_o = 12)$

$$
x_i = 10 \wedge \mathcal{R}_1(x^i, x^o) \wedge x_o = 12
$$

is SAT

 \rightarrow Improve precision of $\mathcal{R}_1(x^i, x^o)$ s.t. the formula becomes UNSAT

Model(*X i*) *Model*(*X o*) نڊيو.
پيدا

Compute a new relation input context $x_i = 10$

Example:

$$
x_i = 10 \Rightarrow x_o \leq x_i
$$

Compute a new relation input context $x_i = 10$

Example:

$$
x_i = 10 \Rightarrow x_o \leq x_i
$$

Not very general...

Model(*X i*) *Model*(*X o*)

Compute a new relation input context $x_i = 10$

Example:

$$
x_i = 10 \Rightarrow x_o \leq x_i
$$

$$
|x_i>0| \Rightarrow x_0 \leq x_i
$$

[★] $x_i = 10 \land (x_0 \leq x_i) \land x_0 = 12$ no more possible

Search for new error trace

Until no trace is found. . .

Search for new error trace

Until no trace is found. . .

Summary

[Improving Abstract Interpretation with Decision Procedures](#page-37-0)

- **[Modular Static Analysis](#page-70-0)**
- **[Implementation: The P](#page-82-0)AGAI Static Analyzer**
- [Application: Bounding Worst-Case Execution Time \(WCET\)](#page-86-0)

CONTRIBUTION: PAGAI Static Analyzer [Henry & Monniaux & Moy, TAPAS12]

Static analyzer for C/C++/Ada/Fortran/... Written in C++, > 20,000 LOC

- Uses the LLVM compiler infrastructure
- Most approaches described here are implemented

Numerical invariants

- **PAGAI checks:**
	- \blacktriangleright array out-of-bound accesses
	- \blacktriangleright integer overflows
	- \blacktriangleright assert over numerical variables
- Handles **real-life** programs
- Already used outside Verimag (Spain, India, ...)

Comparisons of Various Techniques

Experiments on GNU projects: libgsl, libjpeg, libpng, gnugo, tar, . . .

Software-Verification Competition

Summary

[Improving Abstract Interpretation with Decision Procedures](#page-37-0)

[Modular Static Analysis](#page-70-0)

[Implementation: The P](#page-82-0)AGAI Static Analyzer

5 [Application: Bounding Worst-Case Execution Time \(WCET\)](#page-86-0)

}

Target: Reactive Control Systems

```
void main() {
while (1) {
   READ_INPUTS();
   COMPUTE();
   WRITE_OUTPUTS();
}
```


1 "big" infinite loop

 \sim Loop-free body

Goal: WCET for 1 loop iteration < some bound

CONTRIBUTION: Estimating WCET using SMT [Henry & Asavoae & Monniaux & Maiza, LCTES14]

Input:

- **Loop-free** control-flow graph of the loop body
- local timings for basic blocks (# clock cycles)
	- \blacktriangleright given by an external tool, e.g. OTAWA
	- \triangleright runs a panel of static analysis, sensitive to micro-architecture

Principle: Encode the problem into SMT and optimize a cost function

Output:

• WCET for the entire CFG + Worst Case path

Optimization modulo Theory:

We search for the trace maximizing the variable cost. $cost = execution time for the trace$

Using any off-the-shelf SMT solver

Optimization modulo Theory:

We search for the trace maximizing the variable cost. $cost = execution time for the trace$

Using any off-the-shelf SMT solver

Binary Search strategy: Maintain an interval containing the WCET

 \bullet Initial interval $[0, 100]$

Optimization modulo Theory:

We search for the trace maximizing the variable cost. $cost = execution time for the trace$

Using any off-the-shelf SMT solver

Binary Search strategy:

- \bullet Initial interval $[0, 100]$
- Is there a trace where *cost* > 50? Yes, 70

Optimization modulo Theory:

We search for the trace maximizing the variable cost. $cost = execution time for the trace$

Using any off-the-shelf SMT solver

Binary Search strategy:

- \bullet Initial interval $[0, 100]$
- Is there a trace where *cost* > 50? Yes, 70
- \bullet new interval [70, 100]

Optimization modulo Theory:

We search for the trace maximizing the variable cost. $cost = execution time for the trace$

Using any off-the-shelf SMT solver

Binary Search strategy:

- \bullet Initial interval $[0, 100]$
- Is there a trace where *cost* > 50? Yes, 70
- \bullet new interval [70, 100]
- Is there a trace where *cost* > 85? No

Optimization modulo Theory:

We search for the trace maximizing the variable cost. $cost = execution time for the trace$

Using any off-the-shelf SMT solver

Binary Search strategy:

- \bullet Initial interval $[0, 100]$
- Is there a trace where *cost* > 50? Yes, 70
- \bullet new interval [70, 100]
- Is there a trace where *cost* > 85? No
- o new interval [70, 85]

Optimization modulo Theory:

We search for the trace maximizing the variable cost. $cost = execution time for the trace$

Using any off-the-shelf SMT solver

Binary Search strategy:

- \bullet Initial interval $[0, 100]$
- Is there a trace where *cost* > 50? Yes, 70
- \bullet new interval [70, 100]
- Is there a trace where *cost* > 85? No
- new interval [70, 85]
- \bullet . . .

Optimization modulo Theory:

We search for the trace maximizing the variable cost. $cost = execution time for the trace$

Using any off-the-shelf SMT solver

Binary Search strategy:

- \bullet Initial interval $[0, 100]$
- Is there a trace where *cost* > 50? Yes, 70
- \bullet new interval [70, 100]
- Is there a trace where *cost* > 85? No
- new interval [70, 85]
- \bullet . . .

Approach Fails on Simple Examples

 b_1, \ldots, b_n unconstrained Booleans, **ci** and **ci** are the timing costs

if (*b*1) { /*c1=2*/ } else { /*c1=3*/ } //cost c1 if (*b*1) { /*c1'=3*/ } else { /*c1'=2*/ } //cost c1' ... if (*bn*) { /*cn=2*/ } else { /*cn=3*/ } //cost cn if (*bn*) { /*cn'=3*/ } else { /*cn'=2*/ } //cost cn'

"Obviously" all traces take time $(3 + 2)n = 5n$.

Approach Fails on Simple Examples

*b*1, . . . , *bⁿ* unconstrained Booleans, **ci** and **ci'** are the timing costs

if (*b*1) { /*c1=2*/ } else { /*c1=3*/ } //cost c1 if (*b*1) { /*c1'=3*/ } else { /*c1'=2*/ } //cost c1' ... if (*bn*) { /*cn=2*/ } else { /*cn=3*/ } //cost cn if (*bn*) { /*cn'=3*/ } else { /*cn'=2*/ } //cost cn'

"Obviously" all traces take time $(3 + 2)n = 5n$.

SMT approach (using DPLL(T **)) will find 5n, but in exponential time. . .**

Why such high cost?

SMT solver relaxes the SMT formula into a Boolean abstraction

 $DPLL(\mathcal{T})$: [Nieuwenhuis & Oliveras & Tinelli, JACM06]

Why such high cost?

SMT solver relaxes the SMT formula into a Boolean abstraction

 $DPLL(\mathcal{T})$: [Nieuwenhuis & Oliveras & Tinelli, JACM06]

BLOCKING CLAUSE: **Simple** reason why it is UNSAT

BLOCKING CLAUSE: **Simple** reason why it is UNSAT

Only cuts one single program trace. . .

BLOCKING CLAUSE: **Simple** reason why it is UNSAT

Only cuts one single program trace. . .

2 *ⁿ* of them. The solver has to prove them inconsistent **one by one**.

Untractability Issue

SMT solvers miss "obvious" properties

... if (*bi*) { /* ci=2 */ } else { /* ci=3*/ } if (*bi*) { /* ci'=3 */ } else { /* ci'=2*/ } ...

"Obviously, $c_i + c'_i \leq 5$ " \rightarrow easy for a static analyzer !

"Normal*" DPLL (T) -based SMT solvers **do not invent new atomic predicates**

* : [Nieuwenhuis & Oliveras & Tinelli, JACM06], [Decision Procedures, Kroening & Strichman]

J. Henry (University of Grenoble) Contact the Contact of Grenoble) Contact of Grenoble Contact of Gren

Untractability Issue

SMT solvers miss "obvious" properties

... if (*bi*) { /* ci=2 */ } else { /* ci=3*/ } if (*bi*) { /* ci'=3 */ } else { /* ci'=2*/ } ...

"Obviously, $c_i + c'_i \leq 5$ " \rightarrow easy for a static analyzer !

"Normal*" DPLL (T) -based SMT solvers **do not invent new atomic predicates**

What if we simply conjoin these predicates to the SMT formula ?

* : [Nieuwenhuis & Oliveras & Tinelli, JACM06], [Decision Procedures, Kroening & Strichman]

J. Henry (University of Grenoble) Contact the Contact of Grenoble) Contact of Grenoble Contact of Gren

THEORY ATOMS BLOCKING CLAUSE?

Prunes all the 2ⁿ traces at once.
Our Solution: a "Better" SMT Encoding

- Distinguish "portions" in the program.
- Compute upper bound *B*^{*i*} on WCET for each portion
- Conjoin these constraints to the previous SMT formula $c_1 + \cdots + c_5 \leq B_1$, $c_6 + \cdots + c_{10} \leq B_2$, etc.
- The obtained formula is **equivalent**
- Do the binary search as before

Solving time from "nonterminating after one night" to "a few seconds".

Experiments with ARMv7

OTAWA for Basic Block timings Z3 SMT solver, timeout 8h

- Mälardalen WCET Benchmarks \bullet
- SCADE designs \bullet
- Industrial Code \bullet

Conclusion (1/2)

THEORETICAL CONTRIBUTIONS:

SMT can be used in static analysis in many ways:

Improve precision of abstract interpreters (least upper bounds + widening) (2 papers in SAS'12)

incremental analysis

- **INDER Modularity with summaries and counter-examples**
- **Worst-Case Execution Time** estimation using optimization (LCTES'14)

FUTURE WORK:

• Improve SMT solving with Abstract Interpretation

Conclusion (2/2)

PRACTICAL CONTRIBUTIONS'

PAGAI static analyzer for LLVM, robust implementation (TAPAS'12)

- **•** Extensive experiments
- **•** Competitive

```
http://pagai.forge.imag.fr
```
FUTURE WORK:

- Implement our modular static analysis
- Many improvements: data structures, floating points, etc.
- Combine with other program verifiers
- Tune for SV-COMP

THANK YOU !

$$
X_1 = \{0\} \cup \{x \mid \exists x' \in X_2, x = x' + 1\} \cup X_1 \subseteq [0, +\infty)
$$

$$
X_2 = X_1 \cap \{x \mid x < 1000\} \subseteq [0, 999]
$$

Descending sequence does not always work

Restart an analysis from a different, **well chosen**, initial value

$$
X_1 = \{0\} \cup \{x \mid \exists x' \in X_2, x = x' + 1\} \cup X_1 \subseteq [0, +\infty)
$$

$$
X_2 = X_1 \cap \{x \mid x < 1000\} \subseteq [0, 999]
$$

- Select some program location **supposedly already precise**
- Reset the other to $\bot (= \emptyset)$
- Do ascending iterations

$$
X_1 = \{0\} \cup \{x \mid \exists x' \in X_2, x = x' + 1\} \cup X_1 \subseteq [0, +\infty)
$$

$$
X_2 = X_1 \cap \{x \mid x < 1000\} \subseteq [0, 999]
$$

- Select some program location **supposedly already precise**
- Reset the other to $\bot (= \emptyset)$
- Do ascending iterations

$$
X_1 = \{0\} \cup \{x \mid \exists x' \in X_2, x = x' + 1\} \cup X_1 \subseteq [0, +\infty)
$$

$$
X_2 = X_1 \cap \{x \mid x < 1000\} \subseteq [0, 999]
$$

- Select some program location **supposedly already precise**
- Reset the other to $\bot (= \emptyset)$
- Do ascending iterations

$$
X_1 = \{0\} \cup \{x \mid \exists x' \in X_2, x = x' + 1\} \cup X_1 \stackrel{?}{\subseteq} \perp
$$

$$
X_2 = X_1 \cap \{x \mid x < 1000\} \stackrel{?}{\subseteq} [0,999]
$$

- Select some program location **supposedly already precise**
- Reset the other to $\bot (= \emptyset)$
- Do ascending iterations

$$
X_1 = \{0\} \cup \{x \mid \exists x' \in X_2, x = x' + 1\} \cup X_1 \stackrel{?}{\subseteq} [0, 1000]
$$

$$
X_2 = X_1 \cap \{x \mid x < 1000\} \stackrel{?}{\subseteq} [0, 999]
$$

How to choose the portions/cuts ?

How to choose the portions/cuts ?

Semantic criterion

... if (b_i) { \neq timing 2 \neq } else { \neq timing 3 \neq } if (b_i) { \rightarrow timing 3 \rightarrow } else { \rightarrow timing 2 \rightarrow } ...

- Slice the program w.r.t *bⁱ* .
- Recursively call the WCET procedure over the resulting graph
- The obtained WCET gives the upper bound for the portion

Note: Instead of recursive call, an Abstract Interpretation based technique would be possible. . .

WCET: Classical Approach

