
PAGAI: a path sensitive static analyzer

Julien Henry 1

Université Joseph Fourier, VERIMAG
Grenoble, France

David Monniaux1

CNRS, VERIMAG
Grenoble, France

Matthieu Moy1

Grenoble-INP, VERIMAG
Grenoble, France

Abstract

We describe the design and the implementation of PAGAI, a new static analyzer working over the
LLVM compiler infrastructure, which computes inductive invariants on the numerical variables of
the analyzed program.
PAGAI implements various state-of-the-art algorithms combining abstract interpretation and deci-
sion procedures (SMT-solving), focusing on distinction of paths inside the control flow graph while
avoiding systematic exponential enumerations. It is parametric in the abstract domain in use, the
iteration algorithm, and the decision procedure.
We compared the time and precision of various combinations of analysis algorithms and abstract
domains, with extensive experiments both on personal benchmarks and widely available GNU
programs.

Keywords: Static Analysis, Program Verification, Abstract Interpretation, Decision Procedure,
Satisfiability Modulo Theories.

1 Introduction

Sound static analysis automatically computes properties on programs, such as
the possible values of their variables during execution. Applications include:
showing that a program cannot encounter a runtime error (such as arithmetic
overflow, division by zero, array access out of bounds), as in e.g. the Astrée
analyzer [7]; computing invariants for use with assisted proof systems (such
as the B method [1]), thereby lessening the burden on the user; computing
invariants for advanced optimization techniques in compilation (e.g. showing

1 Email: First Name.Last Name@imag.fr

©2012 Published by Elsevier Science B. V.

file:FirstName.LastName@imag.fr

Henry, Monniaux & Moy

that two array cells are distinct, in order to allow instruction reordering be-
tween assignments to these cells). All these applications need invariants on
numerical quantities.

This article introduces PAGAI, a new tool for fully automatic static anal-
ysis. PAGAI takes as input a program in the “bitcode” intermediate represen-
tation of LLVM [13, 14], a modern compilation framework. LLVM bitcode is a
target for several industrial-strengh compilers, most notably Clang (support-
ing C, C++, Objective-C and Objective-C++) and llvm-gcc (supporting, in
addition to these, Fortran and Ada); furthermore, a growing number of analy-
sis tools, testing tools, etc. are currently built around this platform (Calysto,
KLEE, LAV, LLBMC).

The output of PAGAI is a list of inductive invariants for a selected subset
of the control nodes of the original program: for structured source programs,
PAGAI will provide an inductive invariant for loop headers. 2

At present, PAGAI checks user-specified safety properties provided through
assertions using the standard C/C++ assert (condition) macro. The tool will
attempt proving that the assertion failure is unreachable and, if unsuccess-
ful, provide a warning message (the tool does not at present include bounded
model checking or path exploration techniques for reconstructing an actual
failure trace, thus such a warning message should be interpreted as a pos-
sible assertion failure). It also allows user-specified assumptions, through
the assume(condition) macro. Executing traces falsifying assertions or as-
sumptions are considered to terminate when executing the macro; thus, user-
specified assertions may be used to guide the analyzer by providing invariants
that it was not able to synthesize by itself. Possible extensions could include
checking for memory safety of array accesses.

PAGAI is based on abstract interpretation, a general framework for fully
automatic static analysis. PAGAI infers invariants of a selected form; by
default it performs linear relation analysis, which obtains invariants as con-
junctions of linear inequalities (or, equivalently, convex polyhedra), but it also
supports other abstract domains through a runtime option. Depending on the
iteration algorithm selected, PAGAI may also infer invariants as disjunctions
of elements of the abstract domain (e.g. unions of convex polyhedra).

Textbook descriptions of abstract interpretation-based static analysis state
that an inductive invariant is computed at every control point of the program.
In contrast, PAGAI abstracts straight-line sequences of statements en bloc,
computing invariants only at points where control flow branches or merges.
Furthermore, several algorithms implemented in PAGAI compute invariants
only at the heads of loops (or, in general control-flow graph, at nodes forming a

2 A preliminary analysis pass selects a subset of nodes that cuts all cycles in the control-
flow graph, by selecting all targets of return edges in a depth-first search traversal; when
applied to a structured program, it selects loop headers.

2

Henry, Monniaux & Moy

feedback vertex set, whose removal breaks all cycles in the graph), expanding
the rest of the control flow to a possibly exponential number of straight-
line sequences of statements between the selected nodes. In order to avoid
explicit enumerations of exponential sets, PAGAI uses decision procedures for
arithmetic theories, based on the satisfiability modulo theory (SMT) approach:
each path is enumerated only if needed, in response to a positive satisfiability
query [11, 16].

The PAGAI tool is dedicated to experimenting with new analysis algo-
rithms. It allows independent selection of the abstract domain and the itera-
tion strategy, and partially independent selection of decision procedure, 3 and
thus is well-suited for comparisons. We thus conducted extensive experiments
both on examples we produced ourselves (sometimes inspired by industrial
code) and on GNU programs, for which the ability to run on any C or C++
code, through the LLVM system, was especially useful. Front-ends for many
analysis tools put restrictions (e.g. no backward goto instructions, no pointer
arithmetic...), often satisfied by safety-critical embedded programs, but not by
generic programs; our tool suffers no such restrictions, though it may in some
cases apply coarse abstractions which may possibly yield weak invariants.

After illustrating the limitation of traditional abstract interpretation on an
example in section 2, we will describe PAGAI’s implementation in section 3,
and comment on the results of extensive experiments in section 4, allowing
the comparison of state of the art techniques on real-life programs.

2 Motivating Example

In most forward abstract interpretation-based analyses, when control flows
from several nodes into a single node, the abstract value at that node is ob-
tained by computing the least upper bound of the incoming abstract values
in the abstract domain (in backward analysis, this occurs when control flows
from a single node to several nodes). If the abstract domain is convex poly-
hedra, then this means computing the convex hull of the incoming polyhedra.
Such an operation may induce unrecoverable loss of precision by introducing
spurious states that cannot occur in concrete program runs.

An example of program where such a loss of precision occurs is depicted in
Fig. 1. In this program, the loop body has two feasible paths that are executed
alternatively, depending on a variable “phase”. Such programs, with active
code paths depending on global “mode” or “phase” variables, often occur in
reactive systems.

3 Certain abstract domains express relationships, such as linear congruences, that certain
decision procedures cannot deal with. It is at present necessary that the decision procedure
reflects semantics at least as precise as those of the abstract domain. This limitation will
be lifted in the future.

3

Henry, Monniaux & Moy

Removing program point n0 breaks all cycles; we are thus primarily con-
cerned with obtaining an inductive invariant at that point. We consider the
domain of convex polyhedra and thus wish to obtain this invariant as a poly-
hedron. Because convex polyhedra form a lattice of infinite height, we use
Kleene iterations (pushing abstract values through control-flow edges) with
a widening scheme, which ensures convergence in finite time to an inductive
invariant, followed by decreasing (narrowing) iterations.

At program point n5, classical forward abstract interpretation with convex
polyhedra computes the convex hull of three incoming polyhedra over variables
(phase, x, t). This convex hull introduces extra states, unreachable in the
concrete programs, for the analysis of the fragment from n5 to n9. When
analyzing the whole loop, these extra states prevent proving x < 100.

To cope with this problem, a solution is to compute disjunctive invariants
at all intermediate nodes: at n5, keep an explicit list of three polyhedra, and
thus obtain a list of nine polyhedra at n9. We pass the convex hull of these
polyhedra to the widening operator at point n0 (which operates on polyhedra,
not on lists of polyhedra). The drawback is that the number of elements in
the lists may grow exponentially with the number of successive tests.

A second solution, equivalent to the preceding with respect to final results
but different in its operation, is to distinguish all nine paths inside the loop
(from n0 to n0), compute the final outcome of each path, and compute the
convex hull of these outcomes. Instead of enumerating all nine paths explicitly,
we consider them in succession, only as needed. We start with an empty
polyhedron at n9 (more generally, it should contain initial states at this control
point), and process paths as long as they make this polyhedron grow. The next
path to consider is obtained from a model of an arithmetic formula expressing
this growth condition [16]; if this formula is unsatisfiable, this means there is
no such path and thus the convex hull encompasses the outcome of all paths.

The advantages of this second method over the preceding one are twofold:
there is no exponentially large list of abstract elements, and the satisfiability
query for the formula is handed over to a satisfiability modulo theory (SMT)
solver. Modern SMT-solvers are very efficient; their caching mechanisms may,
for instance, remember that taking a certain branch in the code is incompat-
ible with taking another one (if a Boolean is associated with passing through
each branch, then this is just a blocking clause inside the underlying SAT-
solver). The algorithms implemented in PAGAI are variants of this approach
of implicitly representing of exponentially-sized sets of paths and enumerating
them as needed.

4

Henry, Monniaux & Moy

i n t x = 0 ;
i n t t = 0 ;
i n t phase = 0 ;

while (t < 100) {
i f (phase == 0)

x = x +2;
i f (phase == 1)

x = x−1;
phase = 1−phase ;
t ++;

}
a s s e r t (x <= 1 0 0) ;

n

n0nf

n1

n3n2 n4

n5

n7n6 n8

n9

x← 0

phase← 1

t >= 100

t < 100

phase, 0? < > =

x← x + 2

phase, 1? < > =

x← x− 1

phase←
1− phase

t←
t + 1

Fig. 1. Example of program, where the loop behaviour vary depending on a variable phase.

3 Implementation

PAGAI is a prototype interprocedural static analyzer, that implements our
recent combined techniques [11] as well as the classical abstract interpretation
algorithm, and the state-of-the-art techniques Path Focusing [16] and Guided
Static Analysis [10].

Abstract domains are provided by the APRON library [12], and include
convex polyhedra (from the builtin Polka “PK” library), octagons, and prod-
ucts of intervals. It also has an interface with the Parma Polyhedra Library
[3], giving access to more abstract domains (e.g. a reduced product of polyhe-
dra and linear congruences, producing invariants such as 0 ≤ x ≤ 1001∧x ≡ 0
(mod 7)).

For SMT-solving, our analyzer uses Yices [9] or Microsoft Z3 [8] through
their C API. An implementation of communications with the SMT-solver by
textual messages sent through a pipe following the SMT-Lib 2 standard [4] is
underway, and now partially supports Z3, MathSAT 5 and SMTinterpol. 4

4 It is unfortunately impossible to ignore differences between solvers behind the supposedly
standard interface, since different solvers may support slightly different sets of operators and
settings and may return models in different formats.

5

Henry, Monniaux & Moy

Name kLOC |PR|
a2ps 55 2012
gawk 59 902
gnuchess 38 1222
gnugo 83 2801
grep 35 820
gzip 27 494
lapack/blas 954 16422
make 34 993
tar 73 1712

Table 1
List of analyzed open-source projects, with their respective number of lines of code, and their

number of control points in PR

3.1 Analysis algorithm

For each program, we distinguish a set PW of suitable widening points by
a simple algorithm: initialize PW = ∅ and for each procedure, compute the
strongly connected components of its control-flow graph using Tarjan’s algo-
rithm; the targets of the back-edges of the depth-first search are added to PW .
The resulting cut set or feedback vertex set is not necessarily minimal, but
is sufficient to disconnect all cycles — more sophisticated techniques are dis-
cussed in e.g. Bourdoncle [6]. 5 It is however unclear whether more advanced
selection techniques would finally yield stronger invariants; the current simple
scheme has the advantage that, when run over a control-flow graph obtained
from a structured program, it marks heads of loops, which is a “natural”
choice.

While [11, 16] provide for another set PR ⊇ PW , with abstract join oper-
ators (as opposed to widenings) being applied at points in PR \ PW , our tool
does not currently such technique, which is meant to reduce the complexity
of SMT formulas at the expense of analysis precision.

LLVM bitcode is in static single assignment (SSA) form: a given scalar
variable is given a value at a single syntactic point in the program. In concrete
terms, an assignment x=2*x+1; gets translated into a definition x2 = 2x1 + 1,
with distinct variables x1 and x2 corresponding to the same original variable
x at different points in the program. Because LLVM generally assigns rather
straightforward names (e.g. x.0 for the first renaming of variable x), the
user can map the invariants back to the original source code; an automatic
and more robust back-to-source mapping, based on debugging information, is
being developed.

LLVM makes it easy to follow definition-use and use-definition chains: for a

5 It would be possible to obtain a feedback vertex set minimal with respect to inclusion
by successive removal of nodes. Obtaining one of minimal cardinality is an NP-complete
problem, but Shamir [18] showed that it can be done in linear time for a class of graphs
including reducible graphs, that is, those obtained from structured programs. This latter
algorithm is being implemented.

6

Henry, Monniaux & Moy

given variable (say, x2) one can immediately obtain its definition (say, 2x1+1).
One may see conversion to SSA form as a static precomputation of some of
the symbolic propagations proposed by Miné [15] to enhance the precision of
analyses.

SSA introduces φ-functions at the head of a control code to define variables
whose value depends on which incoming edge was last taken to reach this
control node. For instance, for if (...) { x = 2*x+1; } else { x= 0; }, then
x2 is defined as φ(2x1 + 1, 0).

In this framework, each variable is uniquely defined as an arithmetic (+,
−, ×, /) function of other variables that themselves may not be representable
as arithmetic functions, because they are defined using φ-functions, loads from
memory, return values from function calls, or other numerical operations (e.g.
bitwise operators) that are not representable with our class of basic arithmetic
operations. We may vary the class of arithmetic operations, for instance, by
restricting ourselves to linear ones.

This motivates a key implementation decision of our tool: only those vari-
ables v1, . . . , vn that are not defined by arithmetic operations are retained as
coordinates in the abstract domain (e.g. as dimensions in polyhedra), assum-
ing they are live at the associated control point.

For instance, assume that x, y, z are numerical variables of a program, x
is defined as x = y + z, and x, y, z are live at point p. Instead of having x as
a dimension for the abstract value at point p, we only have y and z. All the
properties for x can be directly extracted from the abstract value attached to
p and the relation x = y+ z. This is an optimisation in the sense that there is
redundant information in the abstract value if both x, y and z are dimensions
of Xp. The classical definition of liveness can be adapted to our case:

Definition 3.1 [Liveness by linearity] A variable v is live by linearity at a
control point p if and only if one of these conditions holds: (i) v is live in p.
(ii) There is a variable v′, defined as a linear combination of other variables
v1, v2, . . . , vn, so that ∃i ∈ {1, . . . , n}, v = vi, and v′ is live by linearity in p.

Finally, a variable is a dimension in the abstract domain if and only if it
is live by linearity and it is not defined as a linear combination of program
variables.

A basic block of code therefore amounts to a parallel assignment oper-
ation between live-by-linearity variables (v1, . . . , vn) 7→ (f1(v1, . . . , vn), , . . . ,
fn(v1, . . . , vn)); such operations are directly supported by APRON. This has
three benefits: (i) it limits the number of dimensions in the abstract values,
since polyhedra libraries typically perform worse with higher dimensions; 6

6 The additional dimensions express linear equalities between variables, which are directly
handled by polyhedra library. They should therefore cost little assuming some sparse repre-
sentation of the constraints. Alas, several libraries, including APRON, compute with dense

7

Henry, Monniaux & Moy

(ii) the abstract operation for a single path in path-focusing methods also is
a (large) parallel assignment; (iii) as suggested by Miné [15], this approach
is more precise than running abstract operations for each program line sepa-
rately: for instance, for y=x; z=x−y; with precondition x ∈ [0, 1], a line-by-line
interval analysis obtains y ∈ [0, 1] and z ∈ [−1, 1] while our “en bloc” analysis
symbolically simplifies z = x− x = 0 and thus z ∈ [0, 0].

In the event that a node is reachable only by a single control-flow edge
(which may occur because of dead code, or during the first phases of guided
static analysis), the φ operation reduces to a copy of the values flowing from
that edge. In this case, our tool just propagates symbolic values through the
predecessor node, without introducing φ-variables.

3.2 Use

PAGAI takes as input an LLVM bitcode file, and outputs an inductive in-
variant for each control point in PR (typically, the widening points). When a
program contains an assert (...) function call, PAGAI also outputs whether
the statement has been proved. It is also possible to add some precondi-
tions about the variables, etc, using a function assume(...) . Both assert
and assume are implemented as C macros. assert (x) is roughly defined
as if (! x) assert fail (); , and the tool just tests for the reachability of

assert fail (); : if it is unreachable, then the assertion is true. assume works
with the same principle, and is defined as if (! x) assumption declared().
Both assert fail and assumption declared are noreturn functions, ter-
minating the program immediately.

3.3 Current limitations of the tool, possible future works

Our tool currently only operates over scalar variables from the SSA represen-
tation and thus cannot directly cope with arrays or memory accessed through
pointers. We therefore run it after the “memory to registers” (mem2reg) op-
timization phase in LLVM, which lifts most memory accesses to scalar vari-
ables. The remaining memory reads are treated as nondeterministic choices,
and writes are ignored. This is a sound abstraction. 7

The analysis is currently intraprocedural: function calls are ignored in
a sound way (the return value is a nondeterministic choice, the value of all
variables escaping from the local scope is discarded...). In order to increase

vectors and matrices, which means that any increase in dimensions slows computations.
7 As rightly pointed out by a referee, this is a sound abstraction only if memory safety
is assumed. The mem2reg preprocessing phase also assumes memory safety, as well as,
possibly, the absence of other undefined behaviors as defined by the C standard. This is the
price of using the front-end from a generic compiler: C compilers have the right to assume
that undefined behaviors do not occur, including in preprocessing and optimization phases.

8

Henry, Monniaux & Moy

precision, we apply function inlining as an LLVM optimization phase. Plans
for interprocedural analysis include computing input/output summaries for
functions as elements of the abstract domain (e.g. if the function operates
over variables x and y, then one could compute a polyhedron over (x, y, x′, y′)
encompassing all input-output pairs) or as more general formulas.

Since it is often advantageous to distinguish whether a loop has been ex-
ecuted at least once, 8 we unroll every loop once, again with a LLVM opti-
mization phase.

Our tool currently assumes that integer variables are unbounded mathe-
matical integers (Z) and floating-point variables are real (or rational) numbers.
Techniques for sound analysis of bounded integers, including with wraparound,
and of floating-point operations have been developed in e.g. the Astrée system
[5, 7], but porting these techniques to our iteration schemes using SMT-solving
requires supplemental work. It is unclear whether one should use bitvector
arithmetic inside the SMT formula, or use mathematical integers with explicit
splits for wraparound. 9

Our implementation of path-focusing currently does not use true accelera-
tion techniques, as proposed by Monniaux et Gonnord [16]. Instead, it simply
runs widening and narrowing iterations on a single path.

We currently analyze each strongly connected component of the control-
flow graph in topological order; thus each loop nest gets analyzed as a single
fixed point. An alternative method would be to recursively decompose the
strongly connected components (for structured programs, this amounts to
reconstructing the nested loop structure) and summarize the inner loops before
analyzing the outer loop.

The analysis is currently only forward, even though nothing in the tech-
niques implemented is specific to forward analysis. A possible extension would
therefore be backward analysis from the assert fail () statements.

4 Experiments

We conducted extensive experiments on real-life programs in order to compare
the different techniques, mostly on open-source projects (Tab. 1) written in
C, C++ and Fortran.

8 Consider the very simple loop for(int i=0; i<n; i++) . The obvious loop invariant is
0 ≤ i ≤ n, but it is valid only if n > 0. One would thus need to use disjunctive loop
invariants to obtain 0 ≤ i ≤ n∨ (i = 0∧n ≤ 0). It is much simpler to unroll the loop once.
9 E.g. an operation z = x + y over n-bit signed integers would appear as the disjunction
of three statements z = x + y ∧ −2n−1 ≤ x + y < 2n−1, z = x + y + 2n ∧ −x + y < −2n−1,
z = x + y − 2n ∧ x + y ≥ 2n−1: one “normal” control path and two “overflow” paths.

9

Henry, Monniaux & Moy

Benchmark G/S PF/S PF/G G+PF/PF G+PF/G DIS/G+PF

() unc. () unc. () unc. () unc. () unc. () unc.

a2ps-4.14 0.28 0 0 4.82 2.55 2.27 4.54 2.55 2.27 6.81 0.28 0 8.23 0 0 13.06 3.40 0.56

gawk-4.0.0 4.62 0 0 3.70 20.37 0.92 0.92 22.22 0 22.22 0 0 11.11 2.77 0 16.66 2.77 0.92

gnuchess-6.0.0 1.51 3.47 0 6.50 4.33 0 6.72 3.25 0.21 6.72 2.38 0 10.19 2.38 0 15.18 2.81 3.03

gnugo-3.8 0.51 4.44 0.34 11.45 4.27 3.07 12.13 4.27 2.73 10.25 3.07 2.05 17.77 3.76 0.34 9.05 11.28 4.78

grep-2.9 0 6.19 0.47 1.90 4.76 0.47 3.80 1.90 1.90 7.61 2.38 0 8.57 2.38 0 10.47 5.23 0.47

gzip-1.4 0.58 7.01 1.75 1.75 12.86 1.16 3.50 8.18 1.16 15.78 2.92 1.16 17.54 1.75 0 17.54 15.78 1.16

lapack-3.3.1 2.60 5.77 0.40 3.11 5.06 1.03 4.66 3.47 1.62 7.55 1.06 0 9.24 1.06 0.81 16.11 7.09 1.34

make-3.82 2.61 0.52 0 1.82 6.26 1.82 1.56 8.09 1.82 11.74 0.52 0 6.52 2.34 1.56 12.27 4.43 0.78

tar-1.26 4.53 3.27 0 5.28 2.77 0 2.77 2.01 0.75 7.05 0.50 0 7.05 0.25 0 9.82 7.05 1.51

Table 2
Results of the comparison of the various techniques described in this paper: classic Abstract
Interpretation (S), Guided Static Analysis (G), Path-focusing (PF), our combined technique
(G+PF), and its version using disjunctive invariants (DIS). For instance, G/S compares the

benefits of Guided Static Analysis over the classic Abstract interpretation algorithm. ((resp.))
gives the percentage of invariants stronger (more precise; smaller with respect to inclusion) with
the left-side (resp. right-side) technique, and “uncomparable” gives the percentage of invariants
that are uncomparable, i.e neither greater nor smaller; the code points where both invariants are

equal make up the remaining percentage

4.1 Precision of the various techniques

For each program and each pair (T1, T2) of analysis techniques, we list the
proportion of control points in PR where T1 (resp. T2) gives a strictly stronger
invariant, denoted by ((resp.)), and the proportion of control points where
the invariants given by T1 and T2 are uncomparable for the inclusion ordering
(the remainder of the control points are thus those for which both techniques
give the same invariant). We use convex polyhedra as the abstract domain.

Let us briefly comment the results given in more details in Table 2. Guided
Static Analysis from Gopan et Reps [10] improves the result of the classical
Abstract Interpretation in 2.21% of the control points in PR. Path-focusing
from Monniaux et Gonnord [16] finds better invariants in 4.13% of the control
points.

However, these two techniques also lose precision in an important number
(4.64% for G, 5.14% for PF) of control points, and obtain worse results than
the classical many times. This result is unexpected, and could be partially
explained by bad behaviour of the widening operator.

Finally, our combined technique gives the most promising results, since it is
statistically more precise than the other techniques. It improves the precision
of the inductive invariant in 8.29% to 9.86% of the control points compared to
the three previous techniques. Still, we obtain worse result in a non-negligible
number of cases (2.02%).

The analysis using disjunctive invariants greatly improves the precision of
the analysis (for 14.46% of the control points in PR compared to G+PF), at
the expense of a higher time cost (see Table 3). It also gives worse results in
6.85% of the points, most probably because of a non-optimal choice of the σ
function, detailed in [11].

While experimenting with techniques that use SMT-solving, we encoun-
tered some limitations due to non-linear arithmetic in the analyzed programs.

10

Henry, Monniaux & Moy

Benchmark S G PF G+PF DIS
a2ps-4.14 23 74 34 115 162
gawk-4.0.0 15 46 12 40 50
gnuchess-6.0.0 50 220 81 312 351
gnugo-3.8 77 159 92 766 1493
grep-2.9 41 85 22 65 122
gzip-1.4 22 268 91 303 230
lapack-3.3.1 294 3740 3773 8159 10351
make-3.82 67 108 53 109 257
tar-1.26 37 218 115 253 396

Table 3
Execution time for each technique, expressed in seconds

Benchmark PK/OCT PK/BOX OCT/BOX PK/PKEQ PK/PKGRID POLY/POLY*

() unc. () unc. () unc. () unc. () unc. () unc.

a2ps-4.14 12.74 .78 0 21.64 0 2.13 18.94 0 .93 90.47 0 0 0 .72 .36 .77 0 0

gawk-4.0.0 21.34 0 0 26.96 0 0 17.97 0 0 88.76 0 0 0 4.44 0 0 0 0

gnuchess-6.0.0 5.99 5.78 2.47 12.67 3.68 2.24 14.87 0 0 83.43 0 0 0 2.23 0 .20 3.47 0

gnugo-3.8 18.75 2.08 2.08 22.50 1.66 1.11 10.86 0 1.12 71.27 .21 1.29 0 .47 0 0 3.69 0

grep-2.9 3.30 0 0 8.26 0 0 8.26 0 0 61.74 0 0 0 .44 0 0 0 0

gzip-1.4 21.16 2.18 0 32.84 .72 1.45 26.27 0 0 80.29 0 0 0 0 0 0 8.75 0

lapack-3.3.1 11.84 5.67 .85 78.96 2.16 2.99 85.03 0 0 94.46 0 .09 .09 3.22 .47 0 4.25 0

make-3.82 6.50 4.00 5.50 6.52 4.34 5.97 11.94 0 0 46.50 0 0 0 2.29 0 0 2.98 5.47

tar-1.26 5.17 4.20 0 9.70 3.23 .97 9.38 0 0 62.13 0 0 0 3.31 0 0 4.91 0

Table 4
Results of the comparison of the various abstract domains, when using the same technique

(G+PF). We used as abstract domains Convex Polyhedra (PK and POLY), Octagons (OCT),
intervals (BOX), linear equalities (PKEQ) and the reduced product of NewPolka convex

polyhedra with linear congruences from the Parma Polyhedra Library [3]. (PKGRID). The last
column compares the domain of Convex Polyhedra with the improved widening operator from

Bagnara et al. [2] (POLY*), and Convex Polyhedra using the classical widening operator (POLY).
POLY and POLY* use the PPL[3]. (,) and “unc.” are defined as in Tab. 2.

Indeed, the SMT-solver is not able to decide the satisfiability of some SMT-
formulae expressing the semantics of non-linear programs. In this case, we
skipped the functions for which the SMT-solver returned the “unknown” re-
sult. This limitation occurred very rarely in our experiments, except for the
analysis of Lapack/Blas, where 798 over the 1602 functions have been skipped.
Lapack/Blas implements matrix computations, which use floating-point mul-
tiplications. In cases where the formula is expressed in too rich a logic for the
SMT-solver to deal with, a number of workarounds are possible, including:
(i) Linearization, as per Miné [15], which overapproximates nonlinear seman-
tics by linear semantics. (ii) Replacing the results of nonlinear operations by
“unknown”. Neither is currently implemented in our tool.

Table 3 gives the execution time of the different analysis techniques. It
is interesting to see that Path-focusing is sometimes faster than the classical
algorithm. This seems due to the fact that this algorithm computes inductive
invariant on a small number of control points compared to classical approaches,
thus leading to fewer operations over abstract values.

11

Henry, Monniaux & Moy

4.2 Precision of Abstract Domains

For each program and each pair (D1, D2) of abstract domains, we compare by
inclusion the invariants of the different control points in PR = PW (Tab. 4).

Statistically, the domain of convex polyhedra gives the better results, but
commonly yields weaker invariants than the domains of octagons/intervals;
this is a known weakness of its widening operator [17]. The Octagon domain
appears to be much better than intervals; this is unsurprising since in most
programs and libraries, bounds on loop indices are non constant: they depend
on some parameters (array sizes etc.).

The Lapack/Blas benchmarks are unusual compared to the other pro-
grams. These libraries perform matrix computations, using nested loops over
indices; such programs are the prime target for polyhedral loop optimization
techniques and it is therefore unsurprising that polyhedra and octagons per-
form very well over them.

The analysis of linear equalities (PKEQ) performs very fast compared to
other abstract domains, but yields very imprecise invariants: it only detects
relations of the form

∑
i aixi = C where ai and C are constants.

Using the reduced product of convex prolyhedra with linear congruences
(PKGRID) improves the analysis by 2.52%.

Finally, we evaluated the benefits of the improved version of the widening
operator for convex polyhedra from Bagnara et al. [2], compared to the clas-
sical widening. We found that the improved version from Bagnara et al. [2]
yields more precise invariants for 3.70% of the control points in PR.

4.3 Future Work

It is not totally relevant to compare by inclusion the abstract values obtained
by the various analysis techniques. Indeed, a slightly smaller invariant may
not always be useful to prove the desired properties. Future work should thus
include experiments with better comparison metrics, such as (i) the number of
assert that have been proved in the code. Unfortunately, it is difficult to find
good benchmarks or real life programs with many assert statements; (ii) the
number of false alarms in a client analysis that detects array bound violations,
arithmetic overflows, etc.

References

[1] J.-R. Abrial. The B-Book: Assigning Programs to Meanings. Cambridge
University Press, 2005. ISBN 0521021758.

[2] R. Bagnara, P. M. Hill, E. Ricci, and E. Zaffanella. Precise widening

12

http://www.worldcat.org/isbn/0521021758

Henry, Monniaux & Moy

operators for convex polyhedra. Science of Computer Programming, 58
(1–2):28–56, Oct. 2005.

[3] R. Bagnara, P. M. Hill, and E. Zaffanella. The Parma Polyhedra Li-
brary: Toward a complete set of numerical abstractions for the analysis
and verification of hardware and software systems. Science of Computer
Programming, 72(1–2):3–21, 2008.

[4] C. Barrett, A. Stump, and C. Tinelli. The SMT-LIB Standard: Version
2.0. In SMT, 2010.

[5] B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné,
D. Monniaux, and X. Rival. A static analyzer for large safety-critical
software. In Programming Language Design and Implementation (PLDI),
pages 196–207. ACM, 2003.

[6] F. Bourdoncle. Sémantiques des Langages Impératifs d’Ordre Supérieur
et Interprétation Abstraite. PhD thesis, École Polytechnique, 1992. http:

//tinyurl.com/BourdonclePhD-pdf.

[7] P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux,
and X. Rival. The ASTRÉE analyzer. In Programming Languages and
Systems (ESOP), number 3444 in LNCS, pages 21–30. Springer, 2005.

[8] L. M. de Moura and N. Bjørner. Z3: An efficient SMT solver. In TACAS,
volume 4963 of LNCS, pages 337–340. Springer, 2008.

[9] B. Dutertre and L. M. de Moura. A fast linear-arithmetic solver for
DPLL(T). In CAV, volume 4144 of LNCS, pages 81–94. Springer, 2006.

[10] D. Gopan and T. W. Reps. Guided static analysis. In SAS, volume 4634
of LNCS, pages 349–365. Springer, 2007.

[11] J. Henry, D. Monniaux, and M. Moy. Succinct representations for abstract
interpretation. In Static analysis (SAS), Lecture Notes in Computer Sci-
ence. Springer Verlag, 2012. To appear.

[12] B. Jeannet and A. Miné. Apron: A library of numerical abstract do-
mains for static analysis. In CAV, volume 5643 of LNCS, pages 661–667.
Springer, 2009.

[13] C. Lattner and V. Adve. LLVM: A compilation framework for lifelong
program analysis & transformation. In CGO, pages 75–86, Washington,
DC, USA, Aug. 2004. IEEE Computer Society.

[14] LLVM Language Reference Manual. LLVM team, 2012. http://llvm.

org/docs/LangRef.html.

[15] A. Miné. Symbolic methods to enhance the precision of numerical ab-
stract domains. In VMCAI, volume 3855 of LNCS, pages 348–363.
Springer, 2006.

[16] D. Monniaux and L. Gonnord. Using bounded model checking to focus

13

http://tinyurl.com/BourdonclePhD-pdf
http://tinyurl.com/BourdonclePhD-pdf
http://llvm.org/docs/LangRef.html
http://llvm.org/docs/LangRef.html

Henry, Monniaux & Moy

fixpoint iterations. In Static analysis (SAS), volume 6887 of LNCS, pages
369–385. Springer, 2011.

[17] D. Monniaux and J. Le Guen. Stratified static analysis based on variable
dependencies, 2011. http://arxiv.org/abs/1109.2405.

[18] A. Shamir. A linear time algorithm for finding minimum cutsets in re-
ducible graphs. SIAM Journal of Computing, 8(4):645–655, 1979. doi:
10.1137/0208051.

14

http://arxiv.org/abs/1109.2405
http://dx.doi.org/10.1137/0208051

	Introduction
	Motivating Example
	Implementation
	Analysis algorithm
	Use
	Current limitations of the tool, possible future works

	Experiments
	Precision of the various techniques
	Precision of Abstract Domains
	Future Work

	References

