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Abstract
In systems with hard real-time constraints, it is necessary to com-
pute upper bounds on the worst-case execution time (WCET) of
programs; the closer the bound to the real WCET, the better. This
is especially the case of synchronous reactive control loops with a
fixed clock; the WCET of the loop body must not exceed the clock
period.

We compute the WCET (or at least a close upper bound thereof)
as the solution of an optimization modulo theory problem that takes
into account the semantics of the program, in contrast to other
methods that compute the longest path whether or not it is feasible
according to these semantics. Optimization modulo theory extends
satisfiability modulo theory (SMT) to maximization problems.

Immediate encodings of WCET problems into SMT yield for-
mulas intractable for all current production-grade solvers — this is
inherent to the DPLL(T) approach to SMT implemented in these
solvers. By conjoining some appropriate “cuts” to these formulas,
we considerably reduce the computation time of the SMT-solver.

We experimented our approach on a variety of control programs,
using the OTAWA analyzer both as baseline and as underlying mi-
croarchitectural analysis for our analysis, and show notable im-
provement on the WCET bound on a variety of benchmarks and
control programs.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Software/Program Verification—Validation; D.2.8 [Software
Engineering]: Metrics—Performance measures; C.3 [Computer
Systems Organization]: Special-Purpose and Application-Based
Systems—Real-Time and Embedded Systems

Keywords WCET; Optimization Modulo Theory; Bounded Model
Checking; Craig Interpolants
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1. Introduction
In embedded systems, it is often necessary to ascertain that the
worst-case execution time (WCET) of a program is less than a
certain threshold. This is in particular the case for synchronous
reactive control loops (infinite loops that acquire sensor values,
compute appropriate actions and update, write them to actuators,
and wait for the next clock tick) [7]: the WCET of the loop body
(“step”) must be less than the period of the clock.

Computing the WCET of a program on a modern architecture
requires a combination of low-level, microarchitectural reasoning
(regarding pipeline and cache states, busses, cycle-accurate timing)
and higher-level reasoning (program control flow, loop counts, vari-
able pointers). A common approach is to apply a form of abstract
interpretation to the microarchitecture, deduce worst-case timings
for elementary blocks, and reassemble these into the global WCET
according to the control flow and maximal iteration counts using
integer linear programming (ILP) [38, 40].

One pitfall of this approach is that the reassembly may take
into account paths that cannot actually occur in the real program,
possibly overestimating the WCET. This is because this reassembly
is mostly driven by the control-flow structure of the program, and
(in most approaches) ignores semantic conditions. For instance, a
control program may (clock-)enable certain parts of the program
according to modular arithmetic with respect to time:

i f ( c lock % 4==0) { /∗ A ∗ / }
/∗ u n r e l a t e d c o d e ∗ /
i f ( c lock % 12==1) { /∗ B ∗ / }

These arithmetic constraints entail that certain combinations of
parts cannot be active simultaneously (sections A and B are mu-
tually incompatible). If such constraints are not taken into account
(as in most approaches), the WCET will be grossly over-estimated.

The purpose of this article is to take such semantic constraints
into account, in a fully automated and very precise fashion. Specif-
ically, we consider the case where the program for which WCET
is to be determined contains only loops for which small static
bounds can be determined (but our approach can also be applied
to general programs through summarization, see section 8). This is
very commonly the case for synchronous control programs, such as
those found in aircraft fly-by-wire controls [37]. Programs of this
form are typically compiled into C from high-level data-flow syn-
chronous programming languages such as SIMULINK2, LUSTRE or
SCADE3 [7].

2 SIMULINKTM is a block diagram environment for multidomain simulation
and model-based design from The Mathworks.
3 SCADETM is a model-based development environment dedicated to critical
embedded software, from Esterel Technologies, derived from the academic
language LUSTRE.



We compute the WCET of such programs by expressing it as
the solution of an optimization modulo theory problem. Optimiza-
tion modulo theory is an extension of satisfability modulo theory
(SMT) where the returned solution is not just any solution, but one
maximizing some objective; in our case, solutions define execution
traces of the program, and the objective is their execution time.

Expressing execution traces of programs as solutions to an SMT
problem is a classical approach in bounded model checking; typi-
cally, the SMT problem includes a constraint stating that the exe-
cution trace reaches some failure point, and an “unsatisfiable” an-
swer means that this failure point is unreachable. In the case of
optimization, the SMT solver has to disprove the existence of so-
lutions greater than the maximum to be returned — in our case,
to disprove the existence of traces of execution time greater than
the WCET. Unfortunately, all currently available SMT solvers take
unacceptably long time to conclude on naive encodings of WCET
problems. This is because all these solvers implement variants of
the DPLL(T) approach [27], which has exponential behavior on
so-called “diamond formulas”, which appear in naive encodings of
WCET on sequences of if-then-elses.

Computing or proving the WCET by direct, naive encoding into
SMT therefore leads to intractable problems, which is probably the
reason why, to our best knowledge, it has not been proposed in the
literature. We however show how an alternate encoding, including
“cuts”, makes such computations tractable. Our contributions are:

1. The computation of worst-case execution time (WCET), or
an over-approximation thereof, by optimization modulo theory.
The same idea may also be applicable to other similar problems
(e.g. number of calls to a memory allocator). Our approach
exhibits a worst-case path, which may be useful for targeting
optimizations so as to lower WCET [41].

2. The introduction of “cuts” into the encoding so as to make
SMT-solving tractable, without any change in the code of the
SMT solver. The same idea may extend to other problems with
an additive or modular structure.

In section 2, we recall the usual approach for the computation of
an upper bound on WCET. In section 3, we recall the general frame-
work of bounded model checking using SMT-solving. In section 4,
we explain how we improve upon the “normal” SMT encoding of
programs so as to make WCET problems tractable, and in section 5
we explain (both theoretically and practically) why the normal en-
coding results in intractable problems. In section 6 we describe our
implementation and experimental results. We present the related
work in section 7, we discuss possible extensions and future works
in section 8, and then, in section 9 we draw the conclusions.

2. Worst-Case Execution Time
Let us first summarize the classical approach to static timing anal-
ysis (for more detail, read e.g. [38, 40]). Figure 1 shows the gen-
eral timing analysis workflow used in a large part of WCET tools
including industrial ones such as AiT4 or academic ones such as
OTAWA5 [2] or CHRONOS6 [29]. For the sake of simplicity, we
shall restrict ourselves to mono-processor platforms with no bus-
master devices except for the CPU.

The analysis considers the object code. The control flow graph
is first reconstructed from the binary. Then, a value analysis (e.g.
abstract interpretation for interval analysis) extracts memory ad-
dresses, loop bounds and simple infeasible paths [19]; such an anal-
ysis may be performed on the binary or the source files (in the lat-

4 http://www.absint.com/ait/
5 http://www.otawa.fr
6 http://www.comp.nus.edu.sg/~rpembed/chronos/
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Figure 1. WCET analysis workflow

ter case, it is necessary to trace object code and low-level variables
to the source code, perhaps using the debugging information pro-
vided by the compiler). This semantic and addressing information
help the micro-architectural analysis, which bounds the execution
time of basic blocks taking into account the whole architecture of
the platform (pipeline, caches, buses,...)[18, 35]. The most popu-
lar method to derive this architecture analysis is abstract interpreta-
tion with specific abstract domains. For instance, a pipeline abstrac-
tion represents sets of detailed pipeline states, including values for
registers or buffers [18]; while a cache abstraction typically tracks
which value may or must be in each cache line [35].

The last step of the analysis uses the basic block execution
time and the semantic information to derive the WCET, usually, in
the “implicit path enumeration technique” (IPET) approach, as the
solution of an integer linear program (ILP) [30]. The ILP variables
represent the execution counts (along a given trace) of each basic
block in the program. The ILP constraints describe the structure of
the control flow graph (e.g. the number of times a given block is
entered equals the number of times it is exited), as well as maximal
iteration counts for loops, obtained by value analysis or provided
by the user. Finally, the execution time to be maximized is the sum
of the basic blocks weighted by their local worst-case execution
time computed by the microarchitectural analysis.

The obtained worst-case path may however be infeasible seman-
tically, for instance, if a condition tests x < 10 and later the un-
modified value of x is again tested in a condition x > 20 along that
path. This is because the ILP represents mostly syntactic informa-
tion from the control-flow graph. This weakness has long been rec-
ognized within the WCET community, which has devised schemes
for eliminating infeasible worst-case paths, for instance, by modi-
fying the control-flow graph before the architecture analysis [33],
or by adding ILP constraints [19, 21]. Infeasible paths are found
via pattern matching of conditions [21] or applying abstract execu-
tion [19]; these methods focus on paths made infeasible by numeric
constraints. These approaches are limited by the expressiveness of
ILP constraints as used in IPET: they consider only “conflict condi-
tions” (exclusive conditional statements: “if condition a is true then
condition b must be false”).

On a loop-free program, the ILP approach is equivalent to find-
ing the longest path in the control-flow graph, weighted according
to the local WCET of the basic blocks. Yet, again, this syntactic
longest path may be infeasible. Instead of piecemeal elimination of
infeasible paths, we propose encoding the set of feasible paths into
an SMT formula, as done in bounded model-checking; the success
of SMT-solving is based on the ability of SMT solvers to exclude
whole groups of spurious solutions by learning lemmas.

http://www.absint.com/ait/
http://www.otawa.fr
http://www.comp.nus.edu.sg/~rpembed/chronos/


/∗ S ∗ /
i f ( b ) {

x = x + 2 ; /∗ C ∗ /
} e lse {

x = x + 3 ; /∗ D ∗ /
}
a s s e r t ( x >= 1 0 ) ;

First-order encoding:
((b ∧ x2 = x1 + 2) ∨ (¬b ∧ x2 = x1 + 3)) ∧ x2 ≥ 10

Or, if the logic language comprises the “if then else” operator:
ite(b, x1 + 2, x1 + 3) ≥ 10

If one wants to record the execution trace finely:
(C ⇔ S ∧ b) ∧ (D ⇔ S ∧ ¬b) ∧
(C ⇒ x2 = x1 + 2) ∧ (D ⇒ x2 = x1 + 3) ∧ x2 ≥ 10

Figure 2. Encoding of a simple program into a first-order logic
formula

Loop-free programs without recursion may seem a very re-
stricted class, but in safety-critical control systems, it is common
that the program consists in one big infinite control loop whose
body must verify a WCET constraint, and this body itself does not
contain loops, or only loops with small static bounds (say, for re-
trieving a value from an interpolation table of known static size),
which can be unrolled. Such programs typically eschew more com-
plicated algorithms, if only because arguing for their termination or
functional correctness would be onerous with respect to the strin-
gent requirements imposed by the authorities. Complicated or dy-
namic data structures are usually avoided [30, ch. II]. This is the
class of programs targeted by e.g. the Astrée static analyzer [14].

Our approach replaces the path analysis by ILP (and possibly
refinement for infeasible paths) by optimization modulo theory.
The control-flow extraction and micro-architectural analysis are
left unchanged, and one may thus use existing WCET tools. In
this paper we consider a simple architecture (ARMv7), though we
plan to look into more complicated ones and address, for example,
persistency analyses for caches, like in [25].

3. Using Bounded Model Checking to Measure
Worst-Case Execution Time

Bounded model checking is an approach for finding software bugs,
where traces of length at most n are exhaustively explored. In
most current approaches, the set of feasible traces of length n is
defined using a first-order logic formula, where, roughly speaking,
arithmetic constraints correspond to tests and assignments, control
flow is encoded using Booleans, and disjunctions correspond to
multiple control edges. The source program may be a high-level
language, an intermediate code (e.g. Java bytecode, LLVM bitcode
[22, 28], Common Intermediate Language. . . ) or even, with some
added difficulty, binary executable code [8].

The first step is to unroll all loops up to statically determined
bounds. Program variables and registers are then mapped to for-
mula variables (implicitly existentially quantified). In an impera-
tive language, but not in first-order logic, the same variable may be
assigned several times: therefore, as in compilation to static single
assignment (SSA) form, different names have to be introduced for
the same program variable, one for each update and others for vari-
ables whose value differs according to where control flows from
(Fig. 2). If the source program uses arrays or pointers to mem-
ory, the formula may need to refer not only to scalar variables, but
also to uninterpreted functions and functional arrays [27]. Mod-
ern SMT-solvers support these datatypes and others suitable for the

analysis of low-level programs, such as bit-vectors (fixed-width bi-
nary arithmetic). If constructs occur in the source program that can-
not be translated exactly into the target logic (e.g. the program has
nonlinear arithmetic but the logic does not), they may be safely
over-approximated by nondeterministic choice. Details on “con-
ventional” first-order encodings for program traces are given in
the literature on bounded model checking [11] and are beyond the
scope of this article.

Let us now see how to encode a WCET problem into SMT. In a
simple model (which can be made more complex and realistic, see
section 8), each program block i has a fixed execution time ti ∈ N,
and the total execution time T is the sum of the execution times
of the blocks encountered in the trace. This execution time can be
incorporated into a “conventional” encoding for program traces in
two ways:

Sum encoding If Booleans χi ∈ {0, 1} record which blocks i
were reached by the execution trace τ , then

T (τ) =

 ∑
i|χi=true

ti

 =

(∑
i

χiti

)
(1)

Counter encoding Alternatively, the program may be modified by
adding a time counter as an ordinary variable, which is incre-
mented in each block. The resulting program then undergoes
the “conventional” encoding: the final value of the counter is
the execution time.

An alternative is to attach a cost to transitions instead of
program blocks. The sum encoding is then done similarly, with
Booleans χi,j ∈ {0, 1} recording which of the transitions have
been taken by an execution trace τ .

T (τ) =

 ∑
(i,j)|χi,j=true

ti,j

 =

∑
(i,j)

χi,jti,j

 (2)

The problem is now how to determine the WCET β = maxT (τ).
An obvious approach is binary search [36], maintaining an interval
[l, h] containing β: take a middle point m := d l+h

2
e, test whether

there exists a trace τ such that T (τ) ≥ m; if so, then set l := m
(or set l := T (τ), if available) and restart, else set h := m− 1 and
restart; stop when the integer interval [l, h] is reduced to a single-
ton. l and h may be respectively initialized to zero and a safe upper
bound on worst-case execution time, for instance one obtained by
a simple “longest path in the acyclic graph” algorithm.

4. Adding Cuts
Experiments with both sum encoding and counter encoding applied
to the “conventional” encoding of programs into SMT were disap-
pointing: the SMT solver was taking far too much time. In partic-
ular, the last step of computing WCET, that is, running the SMT-
solver in order to disprove the existence of traces longer than the
computed WCET, was agonizingly slow even for very small pro-
grams. In section 5 we shall see how this is inherent to how SMT-
solvers based on DPLL(T) — that is, all current production-grade
SMT-solvers — handle the kind of formulas generated from WCET
constraints; but let us first see how we worked around this problem
so as to make WCET computations tractable.

4.1 Rationale
A key insight is that the SMT-solver, applied to such a naive en-
coding, explores a very large number of combinations of branches
(exponential with respect to the number of tests), thus a very large
number of partial traces τ1, . . . , τn, even though the execution time
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of these partial traces is insufficient to change the overall WCET
(section 5 will explain this insight in more detail, both theoretically
and experimentally).

Consider the control-flow graph in Fig. 3; let t1, . . . , t7 be the
WCET of blocks 1 . . . 7 established by microarchitectural analysis
(for the sake of simplicity, we neglect the time taken for decisions).
Assume we have already found a path from start to end going
through block 6, taking β time units; also assume that t1 + t2 +
max(t3, t4) + t5 + t7 ≤ β. Then it is useless for the SMT-solver
to search for paths going through decision 2, because none of them
can have execution time longer than β; yet that is what happens
if using a naive encoding with all current production SMT-solvers
(see section 5). If instead of 1 decision we have 42, then the solver
may explore 242 paths even though there is a simple reason why
none of them will increase the WCET.

Our idea is simple: to the original SMT formula (from “counter
encoding” or “sum encoding”), conjoin constraints expressing that
the total execution time of some portions of the program is less than
some upper bound (depending on the portion). This upper bound
acts as an “abstraction” or “summary” of the portion (e.g. here we
say that the time taken in P2 is at most max(t3, t4) + t5), and the
hope is that this summary is sufficient for the SMT-solver in many
cases. There remain two problems: how to select such portions, and
how to compute this upper bound.

Note that these extra constraints are implied by the original
formula, and thus that conjoining them to it does not change the
solution set or the WCET obtained, but only the execution time of
the analysis. Such constraints are often called “cuts” in operation
research, thus our terminology.

4.2 Selecting portions
The choice of a portion of code to summarize follows source-level
criteria: for instance, a procedure, a block, a macro expansion.
If operating on a control-flow graph, a candidate portion can be
between a node with several incoming edges and its immediate
dominator, if there is non trivial control flow between the two
(Fig. 3).7 On structured languages, this means that we add one

7 A dominator D of a block B is a block such that any path reaching B
must go through D. The immediate dominator of a block B is the unique
I 6= B dominator of B such that I does not dominate any other dominator
D 6= B of B. For instance, the immediate dominator of the end of a cascade
of if-then-else statements is the beginning of the cascade.

constraint for the total timing of every “if-then-else” or “switch”
statement (recall that loops are unrolled, if needed into a cascade
of “if-then-else”). This is the approach that we followed in our
experimental evaluation (section 6).

Let us however remark that these portions of code need not be
contiguous: with the sum encoding, it is straightforward to encode
the fact that the total time of a number of instruction blocks is less
than a bound, even though these instructions blocks are distributed
throughout the code. This is also possible, but less easy, with the
counter encoding (one has to encode an upper bound on the sum of
differences between starting and ending times over all contiguous
subsets of the portion). This means that it is possible to consider
portions that are semantically, but not syntactically related. For
instance, one can consider for each Boolean, or other variable
used in a test, a kind of “slice” of the program that is directly
affected by this variable (e.g. all contents of if-then-elses testing on
this variable) and compute an upper bound for the total execution
time of this slice — in the example in the introduction where the
execution of two portions A and B depend on a variable clock, we
could compute an upper bound on the total time of the program
sliced with respect to clock, that only contains the portions A and
B. Implementing this “slicing” approach is part of our future work.

4.3 Obtaining upper bounds on the WCET of portions
Let us now consider the problem of, given a portion, computing
an upper bound on its WCET. In the case of a contiguous portion,
an upper bound may be obtained by a simple syntactic analysis:
the longest syntactic path is used as a bound (even though it might
be unfeasible). This approach may be extended to non-contiguous
portions. Let us denote by P the portion. For each block b, let tb
be the upper bound on the time spent in block b (obtained from
microarchitectural analysis), and let wb be an unknown denoting
the worst time spent inside P in paths from the start of the program
to the beginning of b. If b1, . . . , bk are the predecessors of b, then
wb = max(wb1 + tb1 .χP (b1), . . . , wbk + tbk .χP (bk)) where
χP (x) is 1 if x ∈ P , 0 otherwise. This system of equations can
be easily solved in (quasi) linear time by considering the wb in
a topological order of the blocks (recall that we consider loop-
free programs). Another approach would be to recursively call the
complete WCET procedure on the program portion, and use its
output as a bound.

The simpler approach described above gave excellent results in
most benchmarks, and we had to refine the cuts with the SMT-based
procedure for only one benchmark (see section 6).

4.4 Example
Let us now see a short, but complete example, extracted from a
control program composed of an initialization phase followed by
an infinite loop clocked at a precise frequency. The goal of the
analysis is to show that the WCET of the loop body never exceeds
the clocking period. For the sake of brevity, we consider only a very
short extract of the control program, implementing a “rate limiter”;
in the real program its input is the result of previous computation
steps, but here we consider that the input is nondeterministic within
[−10000,+10000]. The code run at every clock tick is:

/ / r e t u r n s a v a l u e be tween min and max
extern i n t input ( i n t min , i n t max ) ;
void r a t e l i m i t e r s t e p ( ) {

i n t x old = input (−10000 ,10000) ;
i n t x = input (−10000 ,10000) ;
i f ( x > x old +10)

x = x old +10;
i f ( x < x old−10)

x = x old −10;
x old = x ;

}



This program is compiled to LLVM bitcode,8 then bitcode-level
optimizations are applied, resulting in a LLVM control-flow graph
(Fig. 4 left). From this graph we generate a first-order formula
including cuts (Fig. 4 right). Its models describe execution traces
along with the corresponding execution time cost given by the “sum
encoding”. Here, costs are attached to the transitions between each
pairs of blocks. These costs are supposed to be given. Section 6.3
will describe in full details how we use the OTAWA tool to derive
such precise costs for each transitions.

The SMT encoding of the program semantics (Fig. 4 right)
is relatively simple since the bitcode has an SSA form: The
ite(b, x, y) construct is an if-then-else statement and is equal to x
if b is true, otherwise is equal to y. In our encoding, SMT variables
starting with letter x refer to the LLVM SSA-variables, there is one
Boolean b i for each LLVM BasicBlock, and one Boolean t i j
for each transition. Each transition t i j have a cost c i j given by
OTAWA. For instance, the block entry is given the Boolean b 0,
the block if.then is given the Boolean b 1, and the transition from
entry to if.then is given the Boolean t 0 1 and has a cost of 15
clock cycles. The cuts are derived as follows: if.end has several
incoming transitions and its immediate dominator is entry. The
longest syntactic path between these two blocks is equal to 21. The
cut will then be c 0 1 + c 1 2 + c 0 2 ≤ 21. There is a similar
cut for the portion between if.end and if.end6. Finally, we can
also add the constraint cost ≤ 43 since it is the cost of the longest
syntactic path. While this longest syntactic path has cost 43 (it goes
both through if.then and if.then4), our SMT-based approach
shows there is no semantically feasible path longer than 36 clock
cycles.

4.5 Relationship with Craig interpolants
A Craig interpolant for an unsatisfiable conjunction F1 ∧ F2 is a
formula I such that F1 ⇒ I and I ∧F2 is unsatisfiable, whose free
variables are included in the intersection of those of F1 and F2.

In the case of a program A;B consisting of two portions A and
B executed in sequence, the usual way of encoding the program
yields φA ∧ φB where φA and φB are, respectively, the encodings
of A and B. The free variables of this formula are the inputs
i1, . . . , im and outputs o1, . . . , on of the program, as well as all
temporaries and local variables. Let t1, . . . , tp be the variables live
at the edge from A to B; then the input-output relationship of the
program, with free variables i1, . . . , im, o1, . . . , on is F :

∃t1, . . . , tp(∃ . . . φA) ∧ (∃ . . . φB)
Let us now assume additionally that o1 is the final time and t1

is the time when control flow from A to B (counter encoding). The
SMT formulas used in our optimization process are of the form
F ∧ t1 ≥ β. The cut for portion A is of the form t1 ≤ βA, that for
portion B of the form o1 − t1 ≤ βB . Then, if the cut for portion A
is used to prove that F ∧ t1 ≥ β is unsatisfiable, then this cut is a
Craig interpolant for the unsatisfiable formula (φA)∧(φB∧t1 ≥ β)
(similarly, if the cut for portion B is used, then it is an interpolant
for φB ∧ (φA ∧ t1 ≥ β). Our approach may thus be understood as
preventively computing possible Craig interpolants so as to speed
up solving. The same intuition applies to the sum encoding (up to
the creation of supplementary variables).

5. Intractability: Diamond Formulas
Let us now explain why the formulas without cuts result in unac-
ceptable execution times in the SMT-solvers.

8 LLVM (http://www.llvm.org/) [28] is a compilation framework with
a standardized intermediate representation (bitcode), into which one can
compile with a variety of compilers including GCC (C, C++, Ada. . . ) and
CLANG (C, C++).
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Consider a program consisting in a sequence of n fragments
where the i-th fragment is of the form:

i f (bi ) { /∗ b l o c k o f c o s t xi ∗ /
/∗ t ime c o s t 2 , no t chang ing bi ∗ /

} e lse {
/∗ t ime c o s t 3 , no t chang ing bi ∗ /

}
i f (bi ) { /∗ b l o c k o f c o s t yi ∗ /

/∗ t ime c o s t 3 ∗ /
} e lse {

/∗ t ime c o s t 2 ∗ /
}

The (bi)1≤i≤n are Booleans. A human observer easily concludes
that the worst-case execution time is 5n, by analyzing each frag-
ment separately.

Using the “sum encoding”, the timing analysis is expressed as

T = max

{ n∑
i=1

xi+yi

∣∣∣∣ n∧
i=1

(xi = ite(bi, 2, 3))∧(yi = ite(bi, 3, 2))

}
(3)

Given a bound m, an SMT-solver will have to solve for the
unknowns (bi), (xi), (yi)1≤i≤n the constraint(

(b1 ∧ x1 = 2 ∧ y1 = 3) ∨ (¬b1 ∧ x1 = 3 ∧ y1 = 2)
)
∧ . . .(

(bn ∧ xn = 2 ∧ yn = 3) ∨ (¬bn ∧ xn = 3 ∧ yn = 2)
)
∧

x1 + y1 + · · ·+ xn + yn ≥ m (4)

In the “DPLL(T)” approach (see e.g. Kroening and Strichman [27]
for an introduction), SMT is implemented as a combination of a
SAT solver,9 which searches within a Boolean state space (here,
amounting to b1, . . . , bn ∈ {0, 1}n, but in general arithmetic or

9 Almost all current SAT solvers implement variants of constraint-driven
clause learning (CDCL), a major improvement over DPLL (Davis, Putnam,
Logemann, Loveland), thus the terminology. None of what we say here,
however, is specific to CDCL: our remarks stay valid as long as the com-
bination of propositional and theory reasoning proceeds by sending clauses
constructed from the predicates syntactically present in the original formula
to the propositional solver.
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entry : ; b 0
%c a l l = c a l l i 3 2 @input ( . . . )
%c a l l 1 = c a l l i 3 2 @input ( . . . )
%add = add nsw i 3 2 %c a l l , 10
%cmp = icmp sgt i 3 2 %c a l l 1 , %add
br i 1 %cmp, l a b e l %i f . then , l a b e l %i f . end

i f . then : ; b 1
%add2 = add nsw i 3 2 %c a l l , 10
br l a b e l %i f . end

i f . end : ; b 2
%x . 0 = phi i 3 2 [%add2,% i f . then ] , [% c a l l 1 ,% entry ]
%sub = sub nsw i 3 2 %c a l l , 10
%cmp3 = icmp s l t i 3 2 %x . 0 , %sub
br i 1 %cmp3 , l a b e l %i f . then4 , l a b e l %i f . end6

i f . then4 : ; b 3
%sub5 = sub nsw i 3 2 %c a l l , 10
br l a b e l %i f . end6

i f . end6 : ; b 4
%x . 1 = phi i 3 2 [%sub5 ,% i f . then4 ] , [%x .0 ,% i f . end ]
r e t void

t 0 1, cost = 15

t 0 2, cost = 14

t 1 2, cost = 6

t 2 3, cost = 12

t 2 4, cost = 11

t 3 4, cost = 6

−10000 ≤ x call ≤ 10000
∧ −10000 ≤ x call1 ≤ 10000
∧ x add = (x call+ 10)
∧ t 0 1 = (b 0 ∧ (x call1 > x add))
∧ t 0 2 = (b 0 ∧ ¬(x call1 > x add))
∧ b 1 = t 0 1
∧ x add2 = (x call+ 10)
∧ t 1 2 = b 1
∧ b 2 = (t 0 2 ∨ t 1 2)
∧ b 2⇒ (x x.0 = ite(t 1 2, x add2, x call1))
∧ x sub = (x call− 10)
∧ t 2 3 = (b 2 ∧ (x x.0 < x sub))
∧ t 2 4 = (b 2 ∧ ¬(x x.0 < x sub))
∧ b 3 = t 2 3
∧ x sub5 = (x call− 10)
∧ t 3 4 = b 3
∧ b 4 = (t 2 4 ∨ t 3 4)
∧ b 4⇒ (x x.1 = ite(t 3 4, x sub5, x x.0))

∧ b 0 = b 4 = true ; search for a trace from entry to if.end6

tim
in

g



∧ c 0 1 = ite(t 0 1, 15, 0) ; t 0 1 has cost 15 if taken, else 0
∧ c 0 2 = ite(t 0 2, 14, 0)
∧ c 1 2 = ite(t 1 2, 6, 0)
∧ c 2 3 = ite(t 2 3, 12, 0)
∧ c 2 4 = ite(t 2 4, 11, 0)
∧ c 3 4 = ite(t 3 4, 6, 0)
∧ cost = (c 0 1 + c 0 2 + c 1 2 + c 2 3 + c 2 4 + c 3 4)

cu
ts

{∧ (c 0 1 + c 1 2 + c 0 2) ≤ 21 ; between entry and if.end
∧ (c 3 4 + c 2 4 + c 2 3) ≤ 22 ; between if.end and if.end6
∧ cost ≤ 43

Figure 4. LLVM control-flow graph of the rate limiter step function, and its encoding as an SMT formula with cuts.

other theory predicates are also taken into account) and a decision
procedure for conjunctions of atomic formulas from a theory T.10

Once b1, . . . , bn have been picked, Formula 4 simplifies to a con-
junction

x1 = α1 ∧ y1 = β1 ∧ . . . ∧ xn = αn ∧ yn = βn

∧ x1 + y1 + · · ·+ xn + yn ≥ m (5)

where the αi, βi are constants in {2, 3} such that for each i, αi +
βi = 5. Such a formula is satisfiable if and only if m ≤ 5n.

Assume now m > 5n. All combinations of b1, . . . , bn lead
to unsatisfiable constraints, thus Formula 4 is unsatisfiable. Such
an exhaustive exploration is equivalent to exploring 2n paths in
the control flow graph, computing the execution time for each and
comparing it to the bound. Could an SMT-solver do better? SMT-
solvers, when exploring the Boolean state space, may detect that
the current Boolean choices (say, b3 ∧ ¬b5 ∧ b7) lead to an arith-
metic contradiction, without picking a value for all the Booleans.
The SMT-solver extracts a (possibly smaller) contradiction (say,
b3 ∧ ¬b5), adds the negation of this contradiction to the Boolean
constraints as a theory clause, and restarts Boolean solving. The
hope is that there exist short contradictions that enable the SMT-
solver to prune the Boolean search space. Yet, in our case, there
are no such short contradictions: if one leaves out any of the con-
juncts in Formula 5, the conjunction becomes satisfiable. Note the
asymmetry between proving satisfiability and unsatisfiability: for
satisfiability, one can always hope that clever heuristics will lead to
one solution, while for unsatisfiability, the prover has to close all
branches in the search.

The difficulty of Formula 4 or similar “diamond formulas” is
well-known in SMT circles. It boils down to the SMT-solver work-

10 We leave out improvements such as theory propagation for the sake of
simplicity. See [27] for more details.

ing exclusively with the predicates found in the original formulas,
without deriving new useful ones such as xi + yi ≤ 5. All state-
of-the-art solvers that we have tried have exponential running time
in n when solving Formula 4 for m = 5n (Fig. 5)11; the difficulty
increases exponentially as upper bound on the WCET to be proved
becomes closer to the actual WCET.

There have been proposals of alternative approaches to DPLL(T),
where one would directly solve for the numeric values instead of
solving for Booleans then turning theory lemmas into Boolean
constraints [5, 12, 13, 17, 31]; but no production solver implements
them.12 This is the reason why we turned to incorporating cuts into
the encoding.

6. Implementation and Experimental Results
We experimented our approach for computing the worst-case exe-
cution time on benchmarks from several sources, referenced in Ta-
ble 1. nsichneu and statemate belong to the Mälardalen WCET
benchmarks set [20]13, being the largest of the set (w.r.t. code size).
cruise-control and digital-stopwatch are generated from
SCADETM designs. autopilot and fly-by-wire come from the
Papabench benchmark [34] derived from the Paparazzi free soft-
ware suite for piloting UAVs (http://paparazzi.enac.fr/).
tdf and miniflight are industrial avionic case-studies.

11 A special version of MathSAT 5, which was kindly made available to us
by the authors [36], implements the binary search approach internally. It
suffers from the same exponential behavior as noted in the figure: in its last
step, it has to prove that the maximum obtained truly is maximum.
12 Dejan Jovanovic was kind enough to experiment with some of our formu-
las in his experimental solver [17], but the execution time was unacceptably
high. We stress that this field of workable alternatives to DPLL(T) is still
new and it is too early to draw conclusions.
13 http://www.mrtc.mdh.se/projects/wcet/benchmarks.html

http://paparazzi.enac.fr/
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6.1 Description of the Implementation
We use the infrastructure of the PAGAI static analyzer [22]14 to
produce an SMT formula corresponding to the semantics of a
program expressed in LLVM bitcode.

A limitation is that, at present, PAGAI considers that floating-
point variables are real numbers and that integers are unbounded
mathematical integers, as opposed to finite bit-vectors; certainly an
industrial tool meant to provide sound bounds should have accurate
semantics, but this limitation is irrelevant to our proof-of-concept
(note how the bitvectors from functional semantics and the timing
variables are fully separated — their combination would therefore
not pose a problem to any SMT-solver implementing a variant of
the Nelson-Oppen combination of procedures [27, ch. 10]).

Using the LLVM optimization facilities, we first apply some
standard transformation to the program (loop unrolling, function
inlining, SSA) so as to obtain a single loop-free function; in a
manner reminiscent of bounded model checking. Once the SMT
formula is constructed, we enrich it with an upper timing bound for
each basic block.

Finally, we conjoin to our formula the cuts for the “sum encod-
ing”, i.e., constraints of the form

∑
i∈S ci ≤ B, where the ci’s are

the cost variables attached to the basic blocks. There is one such
“cut” for every basic block with several incoming edges: the con-
straint expresses an upper bound on the total timing of the program
portion comprised between the block and its immediate dominator
(Fig. 3). The bound B is the weight of the maximal path through
the range, be it feasible or infeasible (a more expensive method is
to call the WCET computation recursively on the range).

We use Z3 [16] as an SMT solver and a binary search strategy
to maximize the cost variable modulo SMT.

The encoding of program semantics into SMT may not be fully
precise in some cases. Whenever we cannot precisely translate a
construct from the LLVM bitcode, we abstract it by nondeterminis-
tic choices into all the variables possibly written to by the construct
(an operation referred to as havoc in certain systems); for instance,
this is the case for loads from memory locations that we cannot
trace to a specific variable. We relied on the LLVM mem2reg op-
timization phase to lift memory accesses into SSA (single static
assignment) variables; all accesses that it could not lift were thus
abstracted as nondeterministic choice. We realized that, due to be-
ing limited to local, stack-allocated variables, this phase missed
some possible liftings, e.g. those of global variables. This resulted
in the same variable from the program to be analyzed being con-
sidered as several unrelated nondeterministic loads from memory,
thereby breaking dependencies between tests and preventing in-
feasible paths from being discarded. We thus implemented a sup-
plemental lifting phase for global variables. It is however possible
that our analysis still misses infeasible paths because of badly ab-
stracted constructs (for instance, arrays), and that further improve-
ments could bring even better results (that is, upper bounds on the
WCET that would be closer to the real WCET).

Furthermore, some paths are infeasible because of a global in-
variant of the control loop (e.g. some Booleans a and b activate mu-
tually exclusive modes of operations, and ¬a ∨ ¬b is an invariant);
we have not yet integrated such invariants, which could be obtained
either by static analysis of the program, either by analysis of the
high-level specification from which the program is extracted [1].

Our current implementation keeps inside the program the result-
ing formulas statements and variables that have no effect on control
flow and thus on WCET. Better performance could probably be ob-
tained by slicing away such irrelevant statements.

14 http://pagai.forge.imag.fr

Benchmark name LLVM #lines LLVM #BB
statemate 2885 632
nsichneu 12453 1374
cruise-control 234 43
digital-stopwatch 1085 188
autopilot 8805 1191
fly-by-wire 5498 609
miniflight 5860 745
tdf 2689 533

Table 1. Table referencing the various benchmarks. LLVM #lines
is the number of lines in the LLVM bitcode, and LLVM #BB is its
number of Basic Blocks.

6.2 Results with bitcode-based timing
The problem addressed in this article is not architectural modeling
and low-level timing analysis: we assume that worst-case timings
for basic blocks are given by an external analysis. Here we report
on results with a simple timing basis: the time taken by a LLVM
bitcode block is its number of instructions; our goal here is to
check whether improvements to WCET can be obtained by our
analysis with reasonable computation costs, independently of the
architecture.

As expected, the naive approach (without adding cuts to the
formula) does not scale at all, and the computation has reached
our timeout in all of our largest benchmarks. Once the cuts are
conjoined to the formula, the WCET is computed considerably
faster, with some benchmarks needing less than a minute while they
timed out with the naive approach.

Our results (Table 2, first part) show that the use of bounded
model checking by SMT solving improves the precision of the
computed upper bound on the worst-case execution time, since
the longest syntactic path is in most cases not feasible due to the
semantics of the instructions. As usual with WCET analyzes, it
is difficult to estimate the absolute quality of the resulting bound,
because the exact WCET is unknown (perhaps what we obtain is
actually the WCET, perhaps it overestimates it somewhat).

On the autopilot software, our analysis reduces the WCET
bound by 69.7%. This software has multiple clock domains, stati-
cally scheduled by the periodic_task() function using switches
and arithmetic constraints. Approaches that do not take functional
semantics into account therefore consider activation patterns that
cannot occur in the real system, leading to a huge overestimation
compared to our semantic-sensitive approach.

6.3 Results with realistic timing
The timing model used in the preceding subsection is not meant to
be realistic. We therefore experimented with realistic timings for
the basic blocks, obtained by the OTAWA tool [2] for an ARMv7
architecture. The results are given in Table 2 (second half).

The difficulty here is that OTAWA considers the basic blocks
occurring in binary code, while our analysis considers the basic
blocks in the LLVM bitcode. The LLVM blocks are close to those
in the binary code, but code generation slightly changes the block
structure in some cases. The matching of binary code to LLVM bit-
code is thus sometimes imperfect and we had to resort to one that
safely overestimates the execution time. Fig. 6 gives an overview of
the general workflow for deriving the appropriate costs of LLVM
basic blocks. The alternative would be to generate the SMT for-
mulas not from LLVM bitcode, but directly from the binary code;
unfortunately a reliable implementation needs to address a lot of
open questions, and as such, it falls into our future plans.

While the nsichneu benchmark is fully handled by our ap-
proach when using bitcode-based timing, it is much harder when
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WCET bounds Analysis time (in seconds)
Benchmark name syntactic/OTAWA max-SMT diff with cuts without cuts #cuts

Bitcode-based timings (in number of LLVM instructions)
statemate 997 951 4.6% 118.3 +∞ 143
nsichneu 9693 5998 38.1% 131.4 +∞ 252
cruise-control 123 121 1.6% 0.1 0.1 13
digital-stopwatch 332 302 9.0% 1.0 35.5 53
autopilot 4198 1271 69.7% 782.0 +∞ 498
fly-by-wire 2932 2792 4.7% 7.6 +∞ 163
miniflight 4015 3428 14.6% 35.8 +∞ 251
tdf 1583 1569 0.8% 5.4 343.8 254

Realistic timings (in cycles) for an ARMv7 architecture
statemate 3297 3211 2.6% 943.5 +∞ 143
nsichneu* (1 iteration) 17242 <13332** 22.7% 3600** +∞ 378
cruise-control 881 873 0.9% 0.1 0.2 13
digital-stopwatch 1012 954 5.7% 0.6 2104.2 53
autopilot 12663 5734 54.7% 1808.8 +∞ 498
fly-by-wire 6361 5848 8.0% 10.8 +∞ 163
miniflight 17980 14752 18.0% 40.9 +∞ 251
tdf 5789 5727 1.0% 13.0 +∞ 254

Table 2. max-SMT is the upper bound on WCET reported by our analysis based on optimization modulo theory, while syntactic/OTAWA
is the execution time of longest syntactic path (provided by Otawa when using realistic timings). diff is the improvement brought by our
method. The analysis time for max-SMT is reported with and without added cuts; +∞ indicates timeout (1 hour). #cuts is the number of
added cuts. In the second part, *) nsichneu has been simplified to one main-loop iteration (instead of 2), and has been computed with cuts
refinement as described in subsection 6.3. **) Computation takes longer than 1 hour. A safe bound of 13332 is already known after this time.

LLVM
IR CFG ARM CFG

Otawa

costs (ARM
CFG)

Traceability:
match blocks

costs (LLVM-
IR CFG)

Encode into
SMT and
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Final WCET

llvm compiler

Legend:

Data

Phase

Figure 6. General workflow for deriving timings using OTAWA.

using the realistic metric. We had to improve our implementation
in two ways: 1. We extract cuts for larger portions of the program:
we take the portions from our previous cuts (between merge points
and their immediate dominators) and derive new cuts by recursively
grouping these portions by two. We then have cuts for one half, one
quarter, etc. of the program. 2. Instead of directly optimising the to-
tal cost variable of the program, we successively optimize the vari-
ables expressing the “cuts” (in order of portion size). This allows to
strengthen the cuts with smaller upper bounds, and helps the anal-
ysis of the bigger portions. In this benchmark, all the biggest paths
are unfeasible because of inconsistent semantic constraints over the
variables involved in the tests. Better cuts could be derived if we
were not restricted to contiguous portions in the implementation.
The computation time is around 6.5 hours to get the exact WCET
(13298 cycles), but we could have stopped after one hour and get
a correct upper bound of 13332 cycles, which is already very close
to the final result.

7. Related Work
The work closest to ours is from Chu and Jaffar [10]. They per-
form symbolic execution on the program, thereby unrolling an
exponentially-sized execution tree (each if-then-else construct dou-
bles the number of branches). This would be intolerably expensive
if not for the very astute subsumption criterion used to fold some
of the branches into others already computed. More specifically,
their symbolic execution generalizes each explored state S to a
first-order formula defining states from which the feasible paths are
included in those starting from S; these formula are obtained from
Craig interpolants extracted from the proofs of infeasibility.

In our approach, we also learn formula that block infeasible
paths or paths that cannot lead to paths longer than the WCET
obtained, in two ways: the SMT-solver learns blocking clauses
by itself, and we feed “cuts” to it. Let us now attempt to give a
high-level view of the difference between our approach and theirs.
Symbolic execution [6] (in depth-first fashion) can be simulated by
SMT-solving by having the SMT-solver select decision literals [27]
in the order of execution of the program encoded into the formula;
in contrast, general bounded model checking by SMT-solving will
assert predicates in an arbitrary order, which may be preferrable
in some cases (e.g. if x ≤ 0 is asserted early in the program and
x + y ≥ 0 very late, after multiple if-then-elses, it is useful to be
able to derive y ≥ 0 immediately without having to wait until the
end of each path). Yet, an SMT-solver based on DPLL(T) does not
learn lemmas constructed from new predicates, while the approach
in [10] learns new predicates on-the-fly from Craig interpolants.
In our approach, we help the SMT-solver by preventively feeding
“candidate lemmas”, which, if used in a proof that there is no path
longer than a certain bound, act as Craig interpolants, as explained
in subsection 4.5. Our approach therefore leverages both out-of-
order predicate selection and interpolation, and, as a consequence,
it seems to scale better.

Two recent works — Biere et al. [4] and its follow-up Knoop
et al. [26] — integrate the WCET path analysis into a counterexam-
ple guided abstraction refinement loop. As such, the IPET approach



using ILP is refined by extracting a witness path for the maximal
time, and testing its feasibility by SMT-solving; if the path is in-
feasible, an additional ILP constraint is generated, to exclude the
spurious path. Because this ILP constraint relates all the condition-
als corresponding to the spurious witness path, excluding infeasi-
bile paths in this way exhibits an exponential behavior we strove to
avoid. Moreover, our approach is more flexible with respect to (1)
the class of properties which can be expressed, as it is not limited by
the ILP semantics and (2) the ability to incorporate non-functional
semantics (which is unclear whether [4] or [26] can).

Metzner [32] proposed an approach where the program control
flow is encoded into a model along with either the concrete se-
mantics of a simple model of instruction cache, or an abstraction
thereof. The WCET bound is obtained by binary search, with each
test performed using the VIS model-checker15. Huber and Schoe-
berl [24] proposed a similar approach with the model-checker UP-
PAAL.16 In both cases, the functional semantics are however not
encoded, save for loop bounds: branches are chosen nondetermin-
istically, and thus the analysis may consider infeasible paths. Dals-
gaard et al. [15] encode into UPPAAL precise models of a pipeline,
instruction cache and data cache, but again the program is mod-
eled as “data insensitive”, meaning that infeasible paths are not
discarded except when exceeding a loop bound.

Holsti [23] considers a loop (though the same approach can also
be applied to loop-free code): the loop is sliced, keeping only in-
structions and variables that affect control flow, and a global “tim-
ing” counter T is added; the input-output relation of the loop body
is obtained as a formula in linear integer arithmetic (Presburger
arithmetic); some form of acceleration is used to establish a re-
lation between T , some induction variables and some inputs to
the program. Applied to loop-free programs, this method should
give exactly the same result as our approach. Its main weakness
is that representations of Presburger sets are notoriously expen-
sive, whereas SMT scales up (the examples given in the cited ar-
ticle seem very small, taking only a few lines and at most 1500
clock cycles for the entire loop execution); also, the restriction to
Presburger arithmetic may exclude many programs, though one can
model constructs outside of Presburger arithmetic by nondetermin-
istic choices. Its strong point is the ability to precisely deal with
loops, including those where the iteration count affects which pro-
gram fragments are active.

8. Extensions and Future Work
The “counter encoding” is best suited for code portions that have a
single entry and exit point (in which case they express the timing
difference between entry and exit). In contrast, the “sum encoding”
may be applied to arbitrary subsets of the code, which do not in fact
need to be connected in the control-flow graph. One may thus use
other heuristic criteria, such as usage of related variables.

A model based on worst-case execution times for every block,
to be reassembled into a global worst-case execution time, may be
too simplistic: indeed, the execution time of a block may depend
on which blocks were executed beforehand, or, for finer modeling,
on the value of pointer variables (for determining cache status).

A very general and tempting idea, as suggested earlier in MDD-
based model-checking [32], in symbolic execution and bounded
model checking by [9, 10], in combined abstract interpretation and
SAT-solving [3] is to integrate in the same analysis both the non-
functional semantics (e.g. caches) and the functional semantics; in
our case, we would replace both the micro-architectural analysis
(or part of it) and the path analysis by a single pass of optimization

15 http://vlsi.colorado.edu/~vis/
16 http://www.uppaal.org/

modulo SMT. Because merely encoding the functional semantics
and a simplistic timing model already led to intractable formulas,
we decided to postpone such micro-architectural modeling until
we had solved scalability issues. We intend to integrate such non-
functional aspects into the SMT problem in future work.

Detailed modeling of the cache, pipeline, etc. may be too expen-
sive to compute beforehand and encode into SMT. One alternative
is to iteratively refine the model with respect to the current “worst-
case trace”: to each basic block one attaches an upper bound on the
worst-case execution time, and once a worst-case trace is obtained,
a trace analysis is run over it to derive stronger constraints. These
constraints can then be incorporated in the SMT encoding before
searching for a new longest path.

We have discussed obtaining a tight upper bound on the worst-
case operation time of the program from upper bounds on the
execution times of the basic blocks. If using lower bounds on the
worst-case execution times of the basic blocks, one may obtain
a lower bound on the worst-case execution time of the program.
Having both is useful to gauge the amount of over-approximation
incurred. Also, by applying minimization instead of maximization,
one gets bounds on best-case execution time, which is useful for
some scheduling applications [39].

On a more practical angle, our analysis is to be connected to
analyses both on the high level specification (e.g. providing in-
variants) and on the object code (micro-architectural timing analy-
sis); this poses engineering difficulties, because typical compilation
framework may not support sufficient tracing information.

Our requirement that the program should be loop-free, or at least
contain loops with small constant bounds, can be relaxed through
an approach similar to that of Chu and Jaffar [10]: the body of a
loop can be summarized by its WCET, or more precisely by some
summaries involving the cost variables and the scalar variables of
the program. Then, this entire loop can be considered as a single
block in an analysis of a larger program, with possibly overapprox-
imations in the WCET, depending on how the summaries are pro-
duced.

9. Conclusion
We have shown that optimization using satisfiability modulo theory
(SMT) is a workable approach for bounding the worst-case execu-
tion time of loop-free programs (or programs where loops can be
unrolled). To our knowledge, this is the first time that such an ap-
proach was successfully applied.

Our approach computes an upper bound on the WCET, which
may or may not be the actual WCET. The sources of discrepancy
are 1) the microarchitectural analysis (e.g. the cache analysis does
not know whether an access is a hit or a miss), 2) the composition
of WCET for basic blocks into WCET for the program, which
may lose dependencies on execution history17, 3) the encoding of
the program into SMT, which may be imprecise (e.g. unsupported
constructs replaced by nondeterministic choices).

We showed that straightforward encodings of WCET problems
into SMT yield problems intractable by all current production-
grade SMT-solvers (“diamond formulas”), and how to work around
this issue using a clever encoding. We believe this approach can
be generalized to other properties, and lead to fruitful interaction
between modular abstraction and SMT-solving.

From a practical point of view, our approach integrates with any
SMT solver without any modification, which makes it convenient
for efficient and robust implementation. It could also integrate
various simple analyses for introducing other relevant cuts.

17 This does not apply to some simple microcontroller architectures, without
cache or pipeline states, e.g. Atmel AVRTM and FreescaleTM HCS12.
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While our redundant encoding brings staggering improvements
in analysis time, allowing formerly intractable problems to be
solved under one minute, the improvements in the WCET upper
bound brought by the elimination of infeasible paths depend on
the structure of the program being analyzed. The improvement on
the WCET bound of some industrial examples (18%, 55%. . . ) is
impressive, in a field where improvements are often of a few per-
cents. This means that, at least for certain classes of programs, it is
necessary to take infeasible paths into account. At present, certain
industries avoid using formal verification for WCET because it has
a reputation for giving overly pessimistic over-estimates; it seems
likely that some of this over-estimation arises from infeasible paths.

Our approach to improving bounds on WCET blends well with
other WCET analyses. It can be coupled with an existing micro-
architectural analysis, or part of that analysis may be integrated into
our approach. It can be combined with precise, yet less scalable
analyzes [23, 26] to summarize inner loops; but may itself be used
as a way to summarize the WCET of portion of a larger program.
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